Zearalenone(ZEN)is a mycotoxin that extensively contaminates food and feed,posing a significant threat to public health.However,the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear.In this study,...Zearalenone(ZEN)is a mycotoxin that extensively contaminates food and feed,posing a significant threat to public health.However,the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear.In this study,Sprague-Dawley(SD)rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w.for a duration of 14 days.The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine.Furthermore,ZEN exposure caused a significant reduction in the levels of apolipoprotein E(ApoE)and liver X receptor(LXR)(P<0.05).Conversely,it upregulated the levels of myeloid-derived suppressor cells(MDSCs)markers(P<0.05)and decreased the presence of 27-hydroxycholesterol(27-HC)in the intestine(P<0.05).It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN.Additionally,a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal,breast,and lung cancers.These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine.Notably,ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.展开更多
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation(LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive thera...Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation(LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solidorgan transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.展开更多
Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and im...Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and immune escape of CRC.MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells,including T and natural killer cells,as well as by inducing the proliferation of immunosuppressive cells,such as regulatory T cells and tumor-associated macrophages,which,in turn,promote the growth of cancer cells.Thus,MDSCs are key contributors to the emergence of an immunosup-pressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity.In this narrative review,we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment,the current therapeutic approaches and technologies targeting MDSCs,and the therapeutic potential of modulating MDSCs in CRC treatment.This study provides ideas and methods to enhance survival rates in patients with CRC.展开更多
Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associ...Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.展开更多
Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced...Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections,such as urinary tract infections and stroke-associated pneumonia,worsening prognosis.Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains,refolding misfolded proteins,and targeting misfolded proteins for degradation.Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones,cochaperones,and their associated pathways.This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.展开更多
Sepsis is a common complication of combat injuries and trauma,and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection.It is also one of the significant causes of deat...Sepsis is a common complication of combat injuries and trauma,and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection.It is also one of the significant causes of death and increased health care costs in modern intensive care units.The use of antibiotics,fluid resuscitation,and organ support therapy have limited prognostic impact in patients with sepsis.Although its pathophysiology remains elusive,immunosuppression is now recognized as one of the major causes of septic death.Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis.It is characterized by the release of antiinflammatory cytokines,abnormal death of immune effector cells,hyperproliferation of immune suppressor cells,and expression of immune checkpoints.By targeting immunosuppression,especially with immune checkpoint inhibitors,preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance.Here,we comprehensively discuss recent findings on the mechanisms,regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.展开更多
Emerged evidence has indicated that immunosuppression is involved in the occurrence and development of sepsis.To provide clinical practice recommendations on the immune function in sepsis,an expert consensus focusing ...Emerged evidence has indicated that immunosuppression is involved in the occurrence and development of sepsis.To provide clinical practice recommendations on the immune function in sepsis,an expert consensus focusing on the monitoring and treatment of sepsis-induced immunosuppression was developed.Literature related to the immune monitoring and treatment of sepsis were retrieved from PubMed,Web of Science,and Chinese National Knowledge Infrastructure to design items and expert opinions were collected through an online questionnaire.Then,the Delphi method was used to form consensus opinions,and RAND appropriateness method was developed to provide consistency evaluation and recommendation levels for consensus opinions.This consensus achieved satisfactory results through two rounds of questionnaire survey,with 2 statements rated as perfect consistency,13 as very good consistency,and 9 as good consistency.After summarizing the results,a total of 14 strong recommended opinions,8 weak recommended opinions and 2 non-recommended opinions were produced.Finally,a face-to-face discussion of the consensus opinions was performed through an online meeting,and all judges unanimously agreed on the content of this consensus.In summary,this expert consensus provides a preliminary guidance for the monitoring and treatment of immunosuppression in patients with sepsis.展开更多
Acute ischemic stroke is often accompanied by complications such as infection.After acute isch-emic stroke,immunosuppression can occur as a mechanism to prevent an excessive inflammatory response. Glucocorticoid,an im...Acute ischemic stroke is often accompanied by complications such as infection.After acute isch-emic stroke,immunosuppression can occur as a mechanism to prevent an excessive inflammatory response. Glucocorticoid,an important product of the hypothalamic-pituitary-adrenal axis,plays a crucial role in inducing immunosuppression in the early stage of acute cerebral infarction. Glucocorticoid not only affects the secretion of inflammatory cytokines but also influences the function of immune cells,ultimately leading to an increased risk of infection.展开更多
基金the Fundamental Research Funds for the Central Universities,China(Grant No.:3332022147)the CAMS Innovation Fund for Medical Sciences,China(Grant Nos.:2021-I2M-1-071 and 2021-I2M-1-031)the National Natural Science Foundation of China(Grant No.:81872999).
文摘Zearalenone(ZEN)is a mycotoxin that extensively contaminates food and feed,posing a significant threat to public health.However,the mechanisms behind ZEN-induced intestinal immunotoxicity remain unclear.In this study,Sprague-Dawley(SD)rats were exposed to ZEN at a dosage of 5 mg/kg/day b.w.for a duration of 14 days.The results demonstrated that ZEN exposure led to notable pathological alterations and immunosuppression within the intestine.Furthermore,ZEN exposure caused a significant reduction in the levels of apolipoprotein E(ApoE)and liver X receptor(LXR)(P<0.05).Conversely,it upregulated the levels of myeloid-derived suppressor cells(MDSCs)markers(P<0.05)and decreased the presence of 27-hydroxycholesterol(27-HC)in the intestine(P<0.05).It was observed that ApoE or LXR agonists were able to mitigate the immunosuppressive effects induced by ZEN.Additionally,a bioinformatics analysis highlighted that the downregulation of ApoE might elevate the susceptibility to colorectal,breast,and lung cancers.These findings underscore the crucial role of the 27-HC/LXR/ApoE axis disruption in ZEN-induced MDSCs proliferation and subsequent inhibition of T lymphocyte activation within the rat intestine.Notably,ApoE may emerge as a pivotal target linking ZEN exposure to cancer development.
文摘Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation(LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solidorgan transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
基金Supported by National Natural Science Foundation of China,No.82320108022,No.82322076 and No.82104466.
文摘Severe immunosuppression is a hallmark of colorectal cancer(CRC).Myeloid-derived suppressor cells(MDSCs),one of the most abundant components of the tumor stroma,play an important role in the invasion,metastasis,and immune escape of CRC.MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells,including T and natural killer cells,as well as by inducing the proliferation of immunosuppressive cells,such as regulatory T cells and tumor-associated macrophages,which,in turn,promote the growth of cancer cells.Thus,MDSCs are key contributors to the emergence of an immunosup-pressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity.In this narrative review,we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment,the current therapeutic approaches and technologies targeting MDSCs,and the therapeutic potential of modulating MDSCs in CRC treatment.This study provides ideas and methods to enhance survival rates in patients with CRC.
基金Supported by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)de la Dirección General de Asuntos de Personal Académico,No.IN212722 and No.IA208424Consejo Mexiquense de Ciencia y Tecnología,No.CS000132Consejo Nacional de Humanidades,Ciencia y Tecnología,No.CF-2023-I-563.
文摘Colorectal cancer(CRC)remains one of the most commonly diagnosed and deadliest types of cancer worldwide.CRC displays a desmoplastic reaction(DR)that has been inversely associated with poor prognosis;less DR is associated with a better prognosis.This reaction generates excessive connective tissue,in which cancer-associated fibroblasts(CAFs)are critical cells that form a part of the tumor microenvironment.CAFs are directly involved in tumorigenesis through different mechanisms.However,their role in immunosuppression in CRC is not well understood,and the precise role of signal transducers and activators of transcription(STATs)in mediating CAF activity in CRC remains unclear.Among the myriad chemical and biological factors that affect CAFs,different cytokines mediate their function by activating STAT signaling pathways.Thus,the harmful effects of CAFs in favoring tumor growth and invasion may be modulated using STAT inhibitors.Here,we analyze the impact of different STATs on CAF activity and their immunoregulatory role.
基金the National Natural Science Foundation of China,Nos.82172147(to YL),81571880(to YL),81373147(to YL),30901555(to JZ),30972870(to YL)the Natural Science Foundation of Hunan Province,Nos.2021JJ30900,2016JJ2157(both to YL)。
文摘Stroke-induced immunosuppression is a process that leads to peripheral suppression of the immune system after a stroke and belongs to the central nervous system injury-induced immunosuppressive syndrome.Stroke-induced immunosuppression leads to increased susceptibility to post-stroke infections,such as urinary tract infections and stroke-associated pneumonia,worsening prognosis.Molecular chaperones are a large class of proteins that are able to maintain proteostasis by directing the folding of nascent polypeptide chains,refolding misfolded proteins,and targeting misfolded proteins for degradation.Various molecular chaperones have been shown to play roles in stroke-induced immunosuppression by modulating the activity of other molecular chaperones,cochaperones,and their associated pathways.This review summarizes the role of molecular chaperones in stroke-induced immunosuppression and discusses new approaches to restore host immune defense after stroke.
基金supported by the National Natural Science Foundation of China(82222038,82020108021 and 82260372)the Chongqing Special Project for Academicians(cstc2020yszx-jcyjX0004)the Chongqing Outstanding Youth Foundation and Science Foundation for Outstanding Youth of the Army Medical Centre(2019CXJSB004)。
文摘Sepsis is a common complication of combat injuries and trauma,and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection.It is also one of the significant causes of death and increased health care costs in modern intensive care units.The use of antibiotics,fluid resuscitation,and organ support therapy have limited prognostic impact in patients with sepsis.Although its pathophysiology remains elusive,immunosuppression is now recognized as one of the major causes of septic death.Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis.It is characterized by the release of antiinflammatory cytokines,abnormal death of immune effector cells,hyperproliferation of immune suppressor cells,and expression of immune checkpoints.By targeting immunosuppression,especially with immune checkpoint inhibitors,preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance.Here,we comprehensively discuss recent findings on the mechanisms,regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.
基金supported by grants from the National Natural Science Foundation of China(81730057,82130062)the Key Project of Military Medical Innovation Program of Chinese PLA(18CXZ026)+1 种基金the Guangdong Clinical Research Center for Critical Care Medicine(2020B1111170005)the Sun Yat?sen University Clinical Research Program 5010(2019002)。
文摘Emerged evidence has indicated that immunosuppression is involved in the occurrence and development of sepsis.To provide clinical practice recommendations on the immune function in sepsis,an expert consensus focusing on the monitoring and treatment of sepsis-induced immunosuppression was developed.Literature related to the immune monitoring and treatment of sepsis were retrieved from PubMed,Web of Science,and Chinese National Knowledge Infrastructure to design items and expert opinions were collected through an online questionnaire.Then,the Delphi method was used to form consensus opinions,and RAND appropriateness method was developed to provide consistency evaluation and recommendation levels for consensus opinions.This consensus achieved satisfactory results through two rounds of questionnaire survey,with 2 statements rated as perfect consistency,13 as very good consistency,and 9 as good consistency.After summarizing the results,a total of 14 strong recommended opinions,8 weak recommended opinions and 2 non-recommended opinions were produced.Finally,a face-to-face discussion of the consensus opinions was performed through an online meeting,and all judges unanimously agreed on the content of this consensus.In summary,this expert consensus provides a preliminary guidance for the monitoring and treatment of immunosuppression in patients with sepsis.
基金supported by Xuanwu Hospital Na-tional Natural Youth Cultivation Project(grant number QNPY202315)the Beijing Natural Science Foundation(grant number 7212047)the National Natural Science Foundation of China(grant numbers 82171297,82101390).
文摘Acute ischemic stroke is often accompanied by complications such as infection.After acute isch-emic stroke,immunosuppression can occur as a mechanism to prevent an excessive inflammatory response. Glucocorticoid,an important product of the hypothalamic-pituitary-adrenal axis,plays a crucial role in inducing immunosuppression in the early stage of acute cerebral infarction. Glucocorticoid not only affects the secretion of inflammatory cytokines but also influences the function of immune cells,ultimately leading to an increased risk of infection.