Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are i...Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are in a situation of uncertainty due to new legislation that even requires decommissioning, an activity that involves many problems and where the risk of failure is the main one. An impact containment structure downstream of these dams can be effective and geotextile tubes, in a new approach, have emerged as an option with advantages in terms of execution, costs and safety. The technology is versatile and can bring many benefits such as the reuse of tailings or filling with low-energy or reused materials. In this research, geotextile tubes were tested as free containment barriers, experiencing impacts in reduced models. The safety factor for the stability of the structure was constructed using an equation which is the ratio between the self-weight of the barrier structure and its coefficient of static friction and the impact pressure, where the data showed an adequate correlation which suggests the viability of mitigating risks.展开更多
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Background: In Africa, malaria-endemic regions have not been spared from COVID-19 outbreak which emerged in the first quarter of 2020. This pandemic has shown clinical and therapeutic similarities with malaria. This f...Background: In Africa, malaria-endemic regions have not been spared from COVID-19 outbreak which emerged in the first quarter of 2020. This pandemic has shown clinical and therapeutic similarities with malaria. This following study sought to determine the impact of COVID-19 on the malaria diagnosis. Method: A review of laboratory registers and an exploitation of the District Health Information Software 2 (DHIS2) to collect information on the diagnosis of malaria by microscopy and by rapid diagnostic test (RDT), but also that of COVID-19 was done from 2017 to 2021 at the Thierno Mouhamadoul Mansour Hospital in Mbour, Senegal. Results: In 2017, 199 Thick drops (TDs) and 1852 RDTs were performed for malaria diagnosis. In 2018, it was 2352 malaria tests with 2138 RDTs and 214 TDs, before reaching a peak of 3943 tests in 2019 including 3742 RDTs and 201 TDs. By 2020, 2263 tests were performed with 2097 malaria RDTs, 158 TDs and 8 COVID RDTs. The latter increased significantly in 2021, reaching 444 COVID RDTs, while TDs and malaria RDT kept decreasing to 147 and 1036 respectively. Positive TDs were higher in 2020 (11.4%) compared to 2017 (3.5%), 2018 (1.4%), 2019 (6.5%) and 2021 (6.8%). For malaria RDTs, a decrease in the number of positive tests was noted between 2017 (4.5%) and 2021 (1.3%). The COVID RDTs were all negative in 2020, 29.5% were positive and 4.1% were undetermined in 2021. Conclusion: COVID-19 has led to changes in efforts to diagnose malaria as well as an increase in malaria prevalence directed towards children under 5 years of age.展开更多
Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the...Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used t...This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used to solve motion equations of the mechanical mechanism inside the impact grenade fuze.The paper focuses on impact velocities that are lower than 5 m s^(-1).An experiment was conducted to study the velocity of the grenade while impacting on dry sand.A high-speed camera video was used to capture the grenade positions.The grenade velocity in the impact process was generated from these video data.Some types of fitting curves are used to regress the velocity equation of the grenade while interacting with the sand media and the best-fitting model is chosen.The result shows the regression curve has a high correlation with the experiment data for grenade velocities below 5 m s^(-1).The received regression equation is useful for analyzing the working ability of the inertial mechanism inside the impact grenade or analyzing and choosing the appropriate parameters of each part in the inertial mechanism to meet the required characteristics of the mechanism.展开更多
A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combin...A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.展开更多
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul...The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.展开更多
Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy o...Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.展开更多
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot...The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate.展开更多
The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with hars...The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.展开更多
With the socio-economic change that has taken place over the last years,in addition to an increase in sustainability regulation,stakeholders have gained importance and organizations are more active in relation to gene...With the socio-economic change that has taken place over the last years,in addition to an increase in sustainability regulation,stakeholders have gained importance and organizations are more active in relation to generating social impact,but society demands more and better social impact from organizations.The objectives of this paper are to clarify the concepts of impact and social impact optimization,and to detect levers and barriers to help organizations optimize the social impact that they generate.A qualitative approach based on interviews with social impact leaders from organizations with different forms(big companies,small and medium-sized enterprises,corporate foundations,b-corps,community foundations,public and private foundations,associations and investing firms)is applied,together with focus groups with stakeholders from those organizations that are best practices.展开更多
The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were train...The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were trained using sets of numerical results on impact of PMMA plates obtained via dynamic FEM coupled with incubation time fracture criterion.The developed approach makes it possible to evaluate the impact strength of a particular target configuration without complicated FEM calculations which require considerable computational resources.Moreover,it is shown that the ANN models are able to predict results for the configurations which cannot be processed using the developed FEM routine due to numerical instabilities and errors:the trained neural network uses information from successful computations to obtain results for the problematic cases.A simple static problem of a perforated plate deformation is discussed prior to the impact problem and preferable ANN architectures are presented for both problems.Some insight into the perforation pattern optimization using a genetic algorithm coupled with the ANN is also made and optimized perforation patterns which theoretically enhance the target impact strength are constructed.展开更多
Pregnancy comes with a combination of physical changes and physiological immunosuppression that increases the susceptibility of women to pathogens and in turn,rises the prevalence of infectious diseases.
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa...Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.展开更多
Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon ...Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.展开更多
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa ligh...This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption.展开更多
文摘Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are in a situation of uncertainty due to new legislation that even requires decommissioning, an activity that involves many problems and where the risk of failure is the main one. An impact containment structure downstream of these dams can be effective and geotextile tubes, in a new approach, have emerged as an option with advantages in terms of execution, costs and safety. The technology is versatile and can bring many benefits such as the reuse of tailings or filling with low-energy or reused materials. In this research, geotextile tubes were tested as free containment barriers, experiencing impacts in reduced models. The safety factor for the stability of the structure was constructed using an equation which is the ratio between the self-weight of the barrier structure and its coefficient of static friction and the impact pressure, where the data showed an adequate correlation which suggests the viability of mitigating risks.
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
文摘Background: In Africa, malaria-endemic regions have not been spared from COVID-19 outbreak which emerged in the first quarter of 2020. This pandemic has shown clinical and therapeutic similarities with malaria. This following study sought to determine the impact of COVID-19 on the malaria diagnosis. Method: A review of laboratory registers and an exploitation of the District Health Information Software 2 (DHIS2) to collect information on the diagnosis of malaria by microscopy and by rapid diagnostic test (RDT), but also that of COVID-19 was done from 2017 to 2021 at the Thierno Mouhamadoul Mansour Hospital in Mbour, Senegal. Results: In 2017, 199 Thick drops (TDs) and 1852 RDTs were performed for malaria diagnosis. In 2018, it was 2352 malaria tests with 2138 RDTs and 214 TDs, before reaching a peak of 3943 tests in 2019 including 3742 RDTs and 201 TDs. By 2020, 2263 tests were performed with 2097 malaria RDTs, 158 TDs and 8 COVID RDTs. The latter increased significantly in 2021, reaching 444 COVID RDTs, while TDs and malaria RDT kept decreasing to 147 and 1036 respectively. Positive TDs were higher in 2020 (11.4%) compared to 2017 (3.5%), 2018 (1.4%), 2019 (6.5%) and 2021 (6.8%). For malaria RDTs, a decrease in the number of positive tests was noted between 2017 (4.5%) and 2021 (1.3%). The COVID RDTs were all negative in 2020, 29.5% were positive and 4.1% were undetermined in 2021. Conclusion: COVID-19 has led to changes in efforts to diagnose malaria as well as an increase in malaria prevalence directed towards children under 5 years of age.
基金the National Natural Science Foundation of China(Nos.52001310 and 52130002)the National Science and Technology Major Project(No.J2019-VI-0019-0134)+1 种基金KC Wong Education Foundation(No.GJTD-2020-09)Institute of Metal Res earch Innovation Fund(No.2023-ZD01)。
文摘Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
基金supported by the research project of the University of Defence in Brno DZRO-FVT22-VAROPS。
文摘This paper deals with the collision of sphere shape grenades with sand media.The central issue of the article is the establishing of an empirical velocity equation of the grenade while impacting on sand that is used to solve motion equations of the mechanical mechanism inside the impact grenade fuze.The paper focuses on impact velocities that are lower than 5 m s^(-1).An experiment was conducted to study the velocity of the grenade while impacting on dry sand.A high-speed camera video was used to capture the grenade positions.The grenade velocity in the impact process was generated from these video data.Some types of fitting curves are used to regress the velocity equation of the grenade while interacting with the sand media and the best-fitting model is chosen.The result shows the regression curve has a high correlation with the experiment data for grenade velocities below 5 m s^(-1).The received regression equation is useful for analyzing the working ability of the inertial mechanism inside the impact grenade or analyzing and choosing the appropriate parameters of each part in the inertial mechanism to meet the required characteristics of the mechanism.
文摘A terminal ballistic analysis of the effects of 7.62 mm × 51 AP P80 rounds on inclined high-strength armor steel plates is the focus of the presented study.The findings of an instrumented ballistic testing combined with 3D advanced numerical simulations performed using the IMPETUS Afea? software yielded the conclusions.The experimental verification proved that slight differences in the pitch-andyaw angles of a projectile upon an impact caused different damage types to the projectile’s core.The residual velocities predicted numerically were close to the experimental values and the calculated core deviations were in satisfactory agreement with the experimental results.An extended matrix of the core deviation angles with combinations of pitch-and-yaw upon impact angles was subsequently built on the basis of the numerical study.The presented experimental and numerical investigation examined thoroughly the influence of the initial pitch and yaw angles on the after-perforation projectile’s performance.
基金the National Natural Science Foundation of China(Grant Nos.62227901,12202068)the Civil Aerospace Pre-research Project(Grant No.D020304).
文摘The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection.
基金supported by the National Natural Science Foundation of China(Grant No.71974167).
文摘Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.12221002)。
文摘The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate.
基金Supported by National Natural Science Foundation of China(Grant Nos.51975526,51505425)National Key R&D Program of China(Grant No.2018YFC0808800)+1 种基金Open Project of Key Laboratory of MEM of China(Grant No.2020XFZB10)Technical Service Projects(Grant Nos.HZFS-XZ-2022-07-02,XJBY-20211221).
文摘The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials.
文摘With the socio-economic change that has taken place over the last years,in addition to an increase in sustainability regulation,stakeholders have gained importance and organizations are more active in relation to generating social impact,but society demands more and better social impact from organizations.The objectives of this paper are to clarify the concepts of impact and social impact optimization,and to detect levers and barriers to help organizations optimize the social impact that they generate.A qualitative approach based on interviews with social impact leaders from organizations with different forms(big companies,small and medium-sized enterprises,corporate foundations,b-corps,community foundations,public and private foundations,associations and investing firms)is applied,together with focus groups with stakeholders from those organizations that are best practices.
基金Russian Science Foundation[grant number 22-71-10019].
文摘The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were trained using sets of numerical results on impact of PMMA plates obtained via dynamic FEM coupled with incubation time fracture criterion.The developed approach makes it possible to evaluate the impact strength of a particular target configuration without complicated FEM calculations which require considerable computational resources.Moreover,it is shown that the ANN models are able to predict results for the configurations which cannot be processed using the developed FEM routine due to numerical instabilities and errors:the trained neural network uses information from successful computations to obtain results for the problematic cases.A simple static problem of a perforated plate deformation is discussed prior to the impact problem and preferable ANN architectures are presented for both problems.Some insight into the perforation pattern optimization using a genetic algorithm coupled with the ANN is also made and optimized perforation patterns which theoretically enhance the target impact strength are constructed.
基金supported by Dirección General del Personal Académico(DGAPA)PAPIIT IN207123,UNAM(to AZ)。
文摘Pregnancy comes with a combination of physical changes and physiological immunosuppression that increases the susceptibility of women to pathogens and in turn,rises the prevalence of infectious diseases.
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC1127)the Fundamental Research Funds for the Central Universities(No.2682023CX075).
文摘Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate.
文摘Following publication of the original article[1],the authors reported that the author Hun-Gi Jung should be affiliated as 3,4 and 5 instead of 4 and 5.The author’s name“A.-Yeon Kim”needed to be updated to“A-Yeon Kim”,removing the period.The correct author’s name and affiliation have been provided in this Correction.The original article[1]has been corrected.
文摘This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health,elucidating the underlying mechanisms involving the Toll-like receptor 4(TLR4)/Nuclear factor kappa light chain enhancer of activated B cells(NF-kB)pathway and the Cytochrome P4502E1(CYP2E1)/reactive oxygen spe-cies(ROS)/nuclear factor erythroid 2-related factor 2(Nrf2)pathways.The TLR4/NF-kB pathway,crucial for inflammatory and immune responses,triggers the production of pro-inflammatory agents and type-1 interferon,disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to al-cohol.Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns(PAMPs),leading to liver cell infection and subsequent inflammation.Concurrently,CYP2E1-mediated alcohol metabolism gen-erates ROS,causing oxidative stress and damaging cells,lipids,proteins,and deoxy-ribonucleic acid(DNA).To counteract this inflammatory imbalance,Nrf2 regulates gene expression,inhibiting inflammatory progression and promoting antioxidant re-sponses.Excessive alcohol intake results in elevated liver enzymes(ADH,CYP2E1,and catalase),ROS,NADH,acetaldehyde,and acetate,leading to damage in vital organs such as the heart,brain,and lungs.Moreover,alcohol negatively affects reproduc-tive health by inhibiting the hypothalamic-pituitary-gonadal axis,causing infertility in both men and women.These findings underscore the profound health concerns associated with alcohol-induced damage,emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ im-pacts of alcohol consumption.