In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to di...In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to different impact load level and rock types. Therefore the impact experiments of the single PDC cutters with different attack angles in four rocks: black basalt, Missouri red granite, Halston limestone, and a very soft (Roubidoux) sandstone were carried out, and the effects of rake angles of PDC cutters on both the penetration and impact resistance of PDC cutters have been discussed in detail. Test results show that a PDC insert can withstand a very strong impact in compression but is easily damaged by impact shearing, the PDC cutters are more easily damaged by shearing if the attack angles are relatively small, the 45? PDC cutters have the least penetration resistance among the cutters tested. Thus it is suggested that the attack angles of PDC cutters should be larger than 30? for bits which must withstand impact from a hammer.展开更多
A study is performed on a newly developed Polycrystalline Diamond Cutter(PDC) with improved impact resistance.Impact resistance of PDC is dependent on diamond grain size,binder content and property of the substrate.A ...A study is performed on a newly developed Polycrystalline Diamond Cutter(PDC) with improved impact resistance.Impact resistance of PDC is dependent on diamond grain size,binder content and property of the substrate.A crack might initiate in the substrate by the impact transferred from the diamond layer if substrate is not tough enough to absorb it.This failure is caused by the residual stress at the interface resulting from the difference of thermal expansion coefficient between diamond and substrate. This kind of failure could be reduced to some extent by optimizing the grain size of WC and content of Co in the substrate.PDC with much improved impact resistance is produced by also optimizing the diamond size and the content of binder phase in the layer. Drop-test with different conditions of energy and speed are carried out on the newly developed PDC and wear resistance test is done and the result is compared with that of previous PDC. It is found that the newly developed PDC shows 40%better impact resistance than previous PDC.展开更多
文摘In order to develop a rotary percussive bit with diamond enhanced cutters assisted by high pressure water jets, it is necessary to study the damage mechanism and the penetration properties of PDC cutters subject to different impact load level and rock types. Therefore the impact experiments of the single PDC cutters with different attack angles in four rocks: black basalt, Missouri red granite, Halston limestone, and a very soft (Roubidoux) sandstone were carried out, and the effects of rake angles of PDC cutters on both the penetration and impact resistance of PDC cutters have been discussed in detail. Test results show that a PDC insert can withstand a very strong impact in compression but is easily damaged by impact shearing, the PDC cutters are more easily damaged by shearing if the attack angles are relatively small, the 45? PDC cutters have the least penetration resistance among the cutters tested. Thus it is suggested that the attack angles of PDC cutters should be larger than 30? for bits which must withstand impact from a hammer.
文摘A study is performed on a newly developed Polycrystalline Diamond Cutter(PDC) with improved impact resistance.Impact resistance of PDC is dependent on diamond grain size,binder content and property of the substrate.A crack might initiate in the substrate by the impact transferred from the diamond layer if substrate is not tough enough to absorb it.This failure is caused by the residual stress at the interface resulting from the difference of thermal expansion coefficient between diamond and substrate. This kind of failure could be reduced to some extent by optimizing the grain size of WC and content of Co in the substrate.PDC with much improved impact resistance is produced by also optimizing the diamond size and the content of binder phase in the layer. Drop-test with different conditions of energy and speed are carried out on the newly developed PDC and wear resistance test is done and the result is compared with that of previous PDC. It is found that the newly developed PDC shows 40%better impact resistance than previous PDC.