The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumul...The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damage-accumulating model to describe the failure delay in the interior of Materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the def...According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.展开更多
The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of prot...The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate.展开更多
Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in ...Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs.展开更多
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the...Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.展开更多
Research Background: Heart failure is a type of organic heart disease caused by excessive ventricular load, leading to insufficient myocardial contractility and decreased cardiac output in the body. With the progressi...Research Background: Heart failure is a type of organic heart disease caused by excessive ventricular load, leading to insufficient myocardial contractility and decreased cardiac output in the body. With the progression of the patient's condition, gastrointestinal dysfunction is frequently complicated. At the same time, the accumulation of feces in the body (colonic impaction) can also increase the burden on the patient’s heart, triggering or exacerbating the occurrence or progression of heart failure. Purpose: this article focuses on the correlation between colonic impaction and heart failure, using the nursing experience of a case of acute left heart failure complicated by colonic impaction as an example, in order to provide clinical evidence for the care of patients with colonic impaction combined with heart failure in the future. Method: By using innovative thinking, the stomach tube is used to replace the enema tube, which is inserted through the anus to reach the end of the colon. By combining acupressure at points such as Zhongwan, Tianzhu, and Guanyuan, it helps promote the elimination of fecal impaction. Conclusion: This case reflects the innovative thinking and adaptability of nurses, providing a new clinical approach for the aggravation of the condition of long-term heart failure patients due to constipation issues. Further research in clinical practice is warranted.展开更多
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t...The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.展开更多
To reveal the damage characteristics and catastrophic failure mechanism of coal rock caused by gas adsorption,physical tests and theoretical methods are employed.The results show that adsorption swelling can damage co...To reveal the damage characteristics and catastrophic failure mechanism of coal rock caused by gas adsorption,physical tests and theoretical methods are employed.The results show that adsorption swelling can damage coal rock,which can be distinguished by fractal dimension.A fitting relationship between the adsorption damage and fractal dimension is proposed by experimental testing and theoretical analysis.High gas adsorption pressure proves to be the dominant factor that leads to coal failure softening and gas outburst disasters.Three main parameters concerning adsorption damage include the change rate of released energy density,the transition difference in the post-peak acoustic emission(AE)b value and the change rate of cumulative AE energy.Results show that all the three parameters present a step-type decreasing change with the increase in fractal dimension,and the fractal dimension shows a linear relationship within the same failure mode.Finally,a method is proposed to evaluate coal rock disaster transformation,based on the aforementioned three main parameters of adsorption damage.展开更多
The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argo...The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.展开更多
Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively...Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures.展开更多
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix...A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.展开更多
Rock pillar is the key supporting component in underground engineering.During an earthquake,the key rock pillar must bear both the seismic load and the load transferred from other damaged pillars.This paper attempts t...Rock pillar is the key supporting component in underground engineering.During an earthquake,the key rock pillar must bear both the seismic load and the load transferred from other damaged pillars.This paper attempts to reveal the influence of the mainshock on damage evolution and failure characteristic of the key rock pillar during aftershocks by cyclic loading test of marble.Four levels of pre-damage stress(i.e.,10,30,50 and 70 MPa)in the first cycle were used to simulate the mainshock damage,and then cyclic stress with the same amplitude(namely 10 MPa)was conducted in the subsequent cycles to simulate the aftershock until rock failure.The results indicate that the presence of pre-damage has an obvious weakening effect on the bearing capacity and deformation resistance of rock materials during the aftershock process.Besides,the increase of pre-damage significantly changes the final failure pattern of the key rock pillar,and leads to an increase in the proportion of small-scale rock fragments.This study may contribute to understanding the seismic capacity of the unreinforced rock pillar during mainshock-aftershock seismic sequences and to optimizing the design of the key rock pillar in underground engineering.展开更多
During deep buried hard-brittle rock tunnel excavation,the surrounding rock experiences a complicated stress path and stress adjustment process.Once the adjusted stress exceeds the ultimate bearing capacity of rockmas...During deep buried hard-brittle rock tunnel excavation,the surrounding rock experiences a complicated stress path and stress adjustment process.Once the adjusted stress exceeds the ultimate bearing capacity of rockmass,a rock failure mode defined as stress-cracking type will occur.In order to investigate the effect of stress paths on failure mechanism and progressive damage of deep-buried rockmass,the cyclic loading-unloading,loading-unloading,uniaxial,conventional and unloading triaxial compression tests on samples of hard-brittle sandstone were conducted.According to the experimental results,increase in the confining pressure was beneficial to improve the mechanical parameters of rock,but it will reduce the brittle failure features.Compared with conventional triaxial compression,the sandstone under unloading state had more remarkable stress drop and unstable failure characteristics.Meanwhile,it was found that the energy dissipation and energy release in the whole process of rock deformation were the internal power of driven rock progressive damage.With the increase of confining pressure,the energy hardening and energy accumulation features of rock were weakened,while the progressive damage evolution characteristics could be enhanced.In unloading state,more energy could be converted into elastic energy in the energy softening phase(σeb-σP),so that the prepeak damage rate of rock was lower than that of conventional triaxial compression state.Thus,the energy dissipation rate of rock after peak strength decreased linearly with the increase of confining pressure under conventional triaxial compression state,while in unloading state it showed the opposite law.展开更多
In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out byme...In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.展开更多
Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic ...Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations.展开更多
In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled ci...In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.展开更多
The damage which represents the alternation of internal slate of material was introduced to concrete strength theory according to the theory of mechanics of continuous medium and the failure criterion of deteriorated ...The damage which represents the alternation of internal slate of material was introduced to concrete strength theory according to the theory of mechanics of continuous medium and the failure criterion of deteriorated concrete was diseussions. In the tests, ultrasonic velocity is used to establish the damage variable and to establish the damage-eoupled failure criterion of concrete under freeze-thaw. The results show that the failure surface is gradually shrinking with the increase of freeze-thaw times. Furthermore, by the comparison between the theoretical data and the testing data from the literature, the rationality of strength theory proposed in the paper acquire confirmation. The damage-coupled failure criterion presented here can indicate the influence of damage evolution on the failure surface of concrete.展开更多
In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under va...In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under various torsional prestrained conditions are investigated from both macroscopic and microscopic points of very slight as contrasted with tensile damage;(2)after torsional prestraining,both yielding strength and ultimate tensile strength become higher for 20 steel and lower for 40Cr steel;(3)when the torsional prestrain exceeds a critical value,that is about 70% of pure torsional shear fracture strain,the ductile-brittle transition of tensile fracture behavior may initiates.Moreover,the advantages and applicable conditions of torsional prestrain strengthening technique are also discussed.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
文摘The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damage-accumulating model to describe the failure delay in the interior of Materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
文摘According to some observed dama ge phenomena in the smart structure systems, the issues related to the damage and failures of smart structures are addressed in this paper. A few possible damage patterns and the definition of the failure of the smart structures are given. It is pointed out that more attentions should be paid to the functional failures o f smart structures. The effects on the control the static deformation due to par tial debonding of PZT actuators are analyzed by the finite element method. Preli minary numerical results show that partial debonding of PZT actuators may have a p preciate reduction on their actuating ability thus reducing the control ability and accuracy of the smart structures.
基金supported by the Innovative Research Groups of the National Natural Science Foundation of China(Grant No.12221002)。
文摘The debris cloud generated by the hypervelocity impact(HVI)of orbiting space debris directly threatens the spacecraft.A full understanding of the damage mechanism of rear plate is useful for the optimal design of protective structures.In this study,the hypervelocity yaw impact of a cylindrical aluminum projectile on a double-layer aluminum plate is simulated by the FE-SPH adaptive method,and the damage process of the rear plate under the impact of the debris cloud is analyzed based on the debris cloud structure.The damage process can be divided into the main impact stage of the debris cloud and the structural response of the rear plate.The main impact stage lasts a short time and is the basis of the rear plate damage.In the stage of structure response,the continuous deformation and inertial motion of the rear plate dominate the perforation of the rear plate.We further analyze the damage mechanism and damage distribution characteristics of the rear plate in detail.Moreover,the connection between velocity space and position space of the debris cloud is established,which promotes the general analysis of the damage law of debris cloud.Based on the relationship,the features of typical damage areas are identified by the localized fine analysis.Both the cumulative effect and structural response cause the perforation of rear plate;in the non-perforated area,cratering by the impact of hazardous fragments is the main damage mode of the rear plate.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672097,11772113)。
文摘Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs.
基金funded from the European Union's Horizon 2020 research and innovation programme in the project In2Track3 under grant agreement No.101012456.
文摘Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.
文摘Research Background: Heart failure is a type of organic heart disease caused by excessive ventricular load, leading to insufficient myocardial contractility and decreased cardiac output in the body. With the progression of the patient's condition, gastrointestinal dysfunction is frequently complicated. At the same time, the accumulation of feces in the body (colonic impaction) can also increase the burden on the patient’s heart, triggering or exacerbating the occurrence or progression of heart failure. Purpose: this article focuses on the correlation between colonic impaction and heart failure, using the nursing experience of a case of acute left heart failure complicated by colonic impaction as an example, in order to provide clinical evidence for the care of patients with colonic impaction combined with heart failure in the future. Method: By using innovative thinking, the stomach tube is used to replace the enema tube, which is inserted through the anus to reach the end of the colon. By combining acupressure at points such as Zhongwan, Tianzhu, and Guanyuan, it helps promote the elimination of fecal impaction. Conclusion: This case reflects the innovative thinking and adaptability of nurses, providing a new clinical approach for the aggravation of the condition of long-term heart failure patients due to constipation issues. Further research in clinical practice is warranted.
基金supported by Youth Science Foundation of the National Natural Science Foundation of China(No.51104156)the Fundamental Research Funds for the Central Universities of China(No.2013QNB02)the 12th Five Year National Science and Technology Support Key Project of China(Nos. 2012BAK04B07-2 and 2012BAK09B01-04)
文摘The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.
基金financial support by the National Natural Science Foundation of China(Grant Nos.51974186,51774164 and 51774048)。
文摘To reveal the damage characteristics and catastrophic failure mechanism of coal rock caused by gas adsorption,physical tests and theoretical methods are employed.The results show that adsorption swelling can damage coal rock,which can be distinguished by fractal dimension.A fitting relationship between the adsorption damage and fractal dimension is proposed by experimental testing and theoretical analysis.High gas adsorption pressure proves to be the dominant factor that leads to coal failure softening and gas outburst disasters.Three main parameters concerning adsorption damage include the change rate of released energy density,the transition difference in the post-peak acoustic emission(AE)b value and the change rate of cumulative AE energy.Results show that all the three parameters present a step-type decreasing change with the increase in fractal dimension,and the fractal dimension shows a linear relationship within the same failure mode.Finally,a method is proposed to evaluate coal rock disaster transformation,based on the aforementioned three main parameters of adsorption damage.
文摘The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500 h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1 h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.
基金The project supported by the National Natural Science Foundation of China(10072026.50135030) Aeronautical Science Foundation of China(01G52041)
文摘Shape memory alloy (SMA) reinforced smart structure can be used to make structural shape and strength selfadapted and structural damage self-restrained. Although SMA smart structures without damages were extensively studied, researches on SMA smart structures with damages have rarely been reported thus far. In this paper, thermo-mechanical behaviors of SMA fiber reinforced smart structures with damages are analyzed through a shear lag model and the variational principle, Mathematical expressions of the meso-displacement field and the stress-strain field of a typical element with damages are obtained, and a failure criterion for interface failure between SMA fibers and matrix is established, which is applied to an example. Results presented herein may provide a theoretical foundation for further studies on integrity of SMA smart structures.
基金financially supported by the Marine Renewable Energy Research Project of State Oceanic Administration of China(Grant No.GHME2013GC03)
文摘A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer(GFRP)composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory(BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions,are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer(CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.
基金Project(2022MD713784) supported by China Postdoctoral ScienceProject (1960321032) supported by the Research Start-up Fund Project for High-level Talents Introduction,ChinaProject (1609722058) supported by Xi’ an University of Architecture and Technology,China。
文摘Rock pillar is the key supporting component in underground engineering.During an earthquake,the key rock pillar must bear both the seismic load and the load transferred from other damaged pillars.This paper attempts to reveal the influence of the mainshock on damage evolution and failure characteristic of the key rock pillar during aftershocks by cyclic loading test of marble.Four levels of pre-damage stress(i.e.,10,30,50 and 70 MPa)in the first cycle were used to simulate the mainshock damage,and then cyclic stress with the same amplitude(namely 10 MPa)was conducted in the subsequent cycles to simulate the aftershock until rock failure.The results indicate that the presence of pre-damage has an obvious weakening effect on the bearing capacity and deformation resistance of rock materials during the aftershock process.Besides,the increase of pre-damage significantly changes the final failure pattern of the key rock pillar,and leads to an increase in the proportion of small-scale rock fragments.This study may contribute to understanding the seismic capacity of the unreinforced rock pillar during mainshock-aftershock seismic sequences and to optimizing the design of the key rock pillar in underground engineering.
基金supported by the National Natural Science Foundation of China(No.52008351)the Sichuan Science and Technology Program(No.2021YJ0539)+2 种基金the project funded by China Postdoctoral Science Foundation(No.2020TQ0250)the Open Foundation of MOE Key Laboratory of Engineering Structures of Heavy Haul Railway(Central South University)(No.2020JZZ01)the Open Foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(No.SKLGP2021K019)。
文摘During deep buried hard-brittle rock tunnel excavation,the surrounding rock experiences a complicated stress path and stress adjustment process.Once the adjusted stress exceeds the ultimate bearing capacity of rockmass,a rock failure mode defined as stress-cracking type will occur.In order to investigate the effect of stress paths on failure mechanism and progressive damage of deep-buried rockmass,the cyclic loading-unloading,loading-unloading,uniaxial,conventional and unloading triaxial compression tests on samples of hard-brittle sandstone were conducted.According to the experimental results,increase in the confining pressure was beneficial to improve the mechanical parameters of rock,but it will reduce the brittle failure features.Compared with conventional triaxial compression,the sandstone under unloading state had more remarkable stress drop and unstable failure characteristics.Meanwhile,it was found that the energy dissipation and energy release in the whole process of rock deformation were the internal power of driven rock progressive damage.With the increase of confining pressure,the energy hardening and energy accumulation features of rock were weakened,while the progressive damage evolution characteristics could be enhanced.In unloading state,more energy could be converted into elastic energy in the energy softening phase(σeb-σP),so that the prepeak damage rate of rock was lower than that of conventional triaxial compression state.Thus,the energy dissipation rate of rock after peak strength decreased linearly with the increase of confining pressure under conventional triaxial compression state,while in unloading state it showed the opposite law.
基金supported by Natural Science Talents Program of Lingnan Normal University(No.ZL2021011).
文摘In order to study themechanical properties of Z-pins reinforced laminated composite single-lap adhesively bonded joint under un-directional static tensile load,damage failure analysis of the joint was carried out bymeans of test and numerical simulation.The failure mode and mechanism of the joint were analyzed by tensile failure experiments.According to the experimental results,the joint exhibits mixed failure,and the ultimate failure is Z-pins pulling out of the adherend.In order to study the failure mechanism of the joint,the finite element method is used to predict the failure strength.The numerical results are in good agreement with the experimental results,and the error is 6.0%,which proves the validity of the numerical model.Through progressive damage failure analysis,it is found that matrix tensile failure of laminate at the edge of Z-pins occurs first,then adhesive layer failure-proceeds at the edge of Z-pins,and finally matrix-fiber shear failure of the laminate takes place.With the increase of load,the matrix-fiber shear failure expands gradually in the X direction,and at the same time,the matrix tensile failure at the hole edge gradually extends in different directions,which is consistent with the experimental results.
基金supported in part by the National Natural Science Foundation of China (Grant Nos.51679028 and 51879034)Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology (Grant No. SKLGDUEK1804)the Fundamental Research Funds for the Central Universities (Grant No.DUT18JC10)
文摘Damage smear method(DSM)is adopted to study trans-scale progressive rock failure process,based on statistical meso-damage model and finite element solver.The statistical approach is utilized to reflect the mesoscopic rock heterogeneity.The constitutive law of representative volume element(RVE)is established according to continuum damage mechanics in which double-damage criterion is considered.The damage evolution and accumulation of RVEs are used to reveal the macroscopic rock failure characteristics.Each single RVE will be represented by one unique element.The initiation,propagation and coalescence of meso-to macro-cracks are captured by smearing failed elements.The above ideas are formulated into the framework of the DSM and programed into self-developed rock failure process analysis(RFPA)software.Two laboratory-scale examples are conducted and the well-known engineering-scale tests,i.e.Atomic Energy of Canada Limited’s(AECL’s)Underground Research Laboratory(URL)tests,are used for verification.It shows that the simulation results match with other experimental results and field observations.
基金National Natural Science Foundation of China under Grant No.51678150Science for Earthquake Resilience under Grant No.XH17064Australian Research Council Discovery Early Career Researcher Award(DECRA)
文摘In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.
基金Supported by the National Natural Science Foun-dation of China (50578068)
文摘The damage which represents the alternation of internal slate of material was introduced to concrete strength theory according to the theory of mechanics of continuous medium and the failure criterion of deteriorated concrete was diseussions. In the tests, ultrasonic velocity is used to establish the damage variable and to establish the damage-eoupled failure criterion of concrete under freeze-thaw. The results show that the failure surface is gradually shrinking with the increase of freeze-thaw times. Furthermore, by the comparison between the theoretical data and the testing data from the literature, the rationality of strength theory proposed in the paper acquire confirmation. The damage-coupled failure criterion presented here can indicate the influence of damage evolution on the failure surface of concrete.
文摘In this paper,the damage state of a torsional prestrained steel is examined by means of the concepts of continuum damage mechanics and then the tensile properties and fracture ductility of two kinds of steels under various torsional prestrained conditions are investigated from both macroscopic and microscopic points of very slight as contrasted with tensile damage;(2)after torsional prestraining,both yielding strength and ultimate tensile strength become higher for 20 steel and lower for 40Cr steel;(3)when the torsional prestrain exceeds a critical value,that is about 70% of pure torsional shear fracture strain,the ductile-brittle transition of tensile fracture behavior may initiates.Moreover,the advantages and applicable conditions of torsional prestrain strengthening technique are also discussed.