This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account...This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account the effect of the mass of impact object and the system of the closed cylindrical shell by impact, and transform the distributed mass of the whole cylindrical shell into an only concentrated 'equivalent mass' by the method of reduced mass. Consequently we derive the dynamic factor of the closed cylindrical shell due to impact load.The method proposed in this paper is of practical worth and is more convenient in calculations.展开更多
Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure m...Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure mechanism still remains unclear. In this work, based on laboratory tests, numerical simulations with the particle flow code(PFC) were carried out to reproduce the micro-fracturing process of granite specimens. Shear and tensile cracks were both recorded to investigate the failure mode of rocks under different loading conditions. At the same time, a dynamic damage model based on the Weibull distribution was established to predict the deformation and degradation behavior of specimens. It is found that micro-cracks play important roles in controlling the dynamic deformation and failure process of rock under impact loadings. The sharp increase in the number of cracks may be the reason for the strength increase of rock under high strain rates. Tensile cracks tend to be the key reason for splitting failure of specimens. Numerical simulation of crack propagation by PFC can give vivid description of the failure process. However, it is not enough for evaluation of material degradation. The dynamic damage model is able to predict the stress-strain relationship of specimens reasonably well, and can be used to explain the degradation of specimens under impact loadings at macro-scale. Crack and damage can describe material degradation at different scales and can be used together to reveal the failure mechanism of rocks.展开更多
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas...The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.展开更多
The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that un...The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that under quasi-static mechanical loading in compression with strain rate of 1.0 × 10^-3 s^-1. The quasi-static-compressed sample exhibited equiaxed dislocation cells, which were different from the elongated and incomplete dislocation cells for the alloy undergoing dynamic compression. The high strain-rate compression also induced the formation of localized shear bands in which the recrystallizations characterized as fine equiaxed grains were observed. The microstructural evolutions under both quasi-static and dynamic compressions are rationalized in terms of the dislocation cell model combined with the dislocation kinetics, in addition to the adiabatic temperature rise in shear bands at high strain rate.展开更多
文摘This article discusses the dynamic computation of the closed cylindrical shell under impact load. In the text we analyse the changes of the momenta and the energy on each stage in the impact process, take into account the effect of the mass of impact object and the system of the closed cylindrical shell by impact, and transform the distributed mass of the whole cylindrical shell into an only concentrated 'equivalent mass' by the method of reduced mass. Consequently we derive the dynamic factor of the closed cylindrical shell due to impact load.The method proposed in this paper is of practical worth and is more convenient in calculations.
基金Projects(51274254,51322403)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0528)supported by theProgram for New Century Excellent Talents in University,ChinaProject(2013SK2011)supported by Hunan Province Science andTechnology Plan,China
文摘Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure mechanism still remains unclear. In this work, based on laboratory tests, numerical simulations with the particle flow code(PFC) were carried out to reproduce the micro-fracturing process of granite specimens. Shear and tensile cracks were both recorded to investigate the failure mode of rocks under different loading conditions. At the same time, a dynamic damage model based on the Weibull distribution was established to predict the deformation and degradation behavior of specimens. It is found that micro-cracks play important roles in controlling the dynamic deformation and failure process of rock under impact loadings. The sharp increase in the number of cracks may be the reason for the strength increase of rock under high strain rates. Tensile cracks tend to be the key reason for splitting failure of specimens. Numerical simulation of crack propagation by PFC can give vivid description of the failure process. However, it is not enough for evaluation of material degradation. The dynamic damage model is able to predict the stress-strain relationship of specimens reasonably well, and can be used to explain the degradation of specimens under impact loadings at macro-scale. Crack and damage can describe material degradation at different scales and can be used together to reveal the failure mechanism of rocks.
基金funded by the National Natural Science Foundation of China(Grant No.12272247)National Key Project(Grant No.GJXM92579)Major Research and Development Project of Metallurgical Corporation of China Ltd.in the Non-Steel Field(Grant No.2021-5).
文摘The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models.
基金financially supported by the National Basic Research Program of China (No.G2011CB012806)
文摘The microstructural evolution of AA7055 aluminum alloy under dynamic impact loading with the strain rate of 1.3 × 10^4 s^-1 controlled by a split Hopkinson pressure bar was investigated, and compared with that under quasi-static mechanical loading in compression with strain rate of 1.0 × 10^-3 s^-1. The quasi-static-compressed sample exhibited equiaxed dislocation cells, which were different from the elongated and incomplete dislocation cells for the alloy undergoing dynamic compression. The high strain-rate compression also induced the formation of localized shear bands in which the recrystallizations characterized as fine equiaxed grains were observed. The microstructural evolutions under both quasi-static and dynamic compressions are rationalized in terms of the dislocation cell model combined with the dislocation kinetics, in addition to the adiabatic temperature rise in shear bands at high strain rate.