期刊文献+
共找到2,847篇文章
< 1 2 143 >
每页显示 20 50 100
Enhanced structural damage behavior of liquid-filled tank by reactive material projectile impact 被引量:1
1
作者 Jianwen Xie Yuanfeng Zheng +4 位作者 Zhenyang Liu Chengzhe Liu Aoxin Liu Pengwan Chen Haifu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期211-229,共19页
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s... A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior. 展开更多
关键词 Reactive material projectile Hydrodynamic ram Enhanced structural damage Liquid-filled tank impact
下载PDF
A Non-Intrusive Stochastic Phase-Field for Fatigue Fracture in Brittle Materials with Uncertainty in Geometry and Material Properties
2
作者 Rajan Aravind Sundararajan Natarajan +1 位作者 Krishnankutty Jayakumar Ratna Kumar Annabattula 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期997-1032,共36页
Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is... Understanding the probabilistic nature of brittle materials due to inherent dispersions in their mechanical properties is important to assess their reliability and safety for sensitive engineering applications.This is all the more important when elements composed of brittle materials are exposed to dynamic environments,resulting in catastrophic fatigue failures.The authors propose the application of a non-intrusive polynomial chaos expansion method for probabilistic studies on brittle materials undergoing fatigue fracture when geometrical parameters and material properties are random independent variables.Understanding the probabilistic nature of fatigue fracture in brittle materials is crucial for ensuring the reliability and safety of engineering structures subjected to cyclic loading.Crack growth is modelled using a phase-field approach within a finite element framework.For modelling fatigue,fracture resistance is progressively degraded by modifying the regularised free energy functional using a fatigue degradation function.Number of cycles to failure is treated as the dependent variable of interest and is estimated within acceptable limits due to the randomness in independent properties.Multiple 2D benchmark problems are solved to demonstrate the ability of this approach to predict the dependent variable responses with significantly fewer simulations than the Monte Carlo method.This proposed approach can accurately predict results typically obtained through 105 or more runs in Monte Carlo simulations with a reduction of up to three orders of magnitude in required runs.The independent random variables’sensitivity to the system response is determined using Sobol’indices.The proposed approach has low computational overhead and can be useful for computationally intensive problems requiring rapid decision-making in sensitive applications like aerospace,nuclear and biomedical engineering.The technique does not require reformulating existing finite element code and can perform the stochastic study by direct pre/post-processing. 展开更多
关键词 PHASE-FIELD fatigue fracture polynomial chaos expansion material uncertainty random variables non-intrusive stochastic technique
下载PDF
Impact dynamics of granular flow on rigid barriers:insights from numerical investigation using material point method
3
作者 YU Fangwei SU Lijun +1 位作者 LI Xinpo ZHAO Yu 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4083-4111,共29页
In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Me... In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well. 展开更多
关键词 Column collapse Granular flow impact force material point method Numerical tests Rigid barrier
下载PDF
Bending Strength of Glass Materials under Strong Dynamic Impact and Its Strain Rate Effects
4
作者 LIU Xiaogen QI Shuang +2 位作者 WEI Shaoshan WAN Detian JIN Chunxia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1358-1364,共7页
Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and dif... Based on the structural characteristics of the high-speed loading tester,a four-point bending test device was designed to carry out the four-point bending strength test of glass under the action of static load and different impact velocities,and the formulae for calculating the maximum dynamic stress and strain rate of glass specimens under the action of impact loads were derived.The experimental results show that the bending strength values of the glass under dynamic impact loading are all higher than those under static loading.With the increase of impact speed,the bending strength value of glass specimens generally tends to increase,and the bending strength value increases more obviously when the impact speed exceeds 0.5 m/s or higher.By increasing the impact velocity,higher tensile strain rate of glass specimens can be obtained because the load action time becomes shorter.The bending strength of the glass material increases with its tensile strain rate,and when the tensile strain rate is between 0 and 2 s^(-1),the bending strength of the glass specimen grows more obviously with the strain rate,indicating that the glass bending strength is particularly sensitive to the tensile strain rate in this interval.As the strain rate increases,the number of cracks formed after glass breakage increases significantly,thus requiring more energy to drive the crack formation and expansion,and showing the strain rate effect of bending strength at the macroscopic level.The results of the study can provide a reference for the load bearing and structural design of glass materials under dynamic loading. 展开更多
关键词 glass materials strong dynamic impact bending strength strain rate effect dynamic enhancement factor
下载PDF
A research of material input and environmental impact for Chinese economy:1990-2005
5
作者 Liu Kailing Duan Ning Sun Qihong 《Ecological Economy》 2009年第4期349-357,共9页
The process of economic activities is on the basis of tremendous material inputs.China has been discharging an enormous amount of waste,giving rise to a wide range of environmental impacts.The method of economy-wide m... The process of economic activities is on the basis of tremendous material inputs.China has been discharging an enormous amount of waste,giving rise to a wide range of environmental impacts.The method of economy-wide material flow analysis(EW-MFA)is one of the effective tools to examine the flow of materials entering physical economies,and recognize early environmental problems.Relevant researches are still at the early stage in China and most focus on material throughput but are rarely concerned about the utilization of recycling resource and environmental impact.Based on more than 3,000 items of data related,materials entering Chinese economy are classified into three types,and then the characteristics of material input and environmental impact are presented for the years 1990-2005 by using the indicators derived from EW-MFA.The Ratio of Recycled Material(RRM) is added as the new indicator in order to be in accordance with the need of circular economy being promoted in China.Results show that the great changes in the structure of material input cause the continuous increase of industrial solid waste emissions and the bogging down of material productivity.The RRM reveals that the utilization of recycling resources remains at a fairly low level in China.Finally,some weakness of EW-MFA is discussed according to the calculated results. 展开更多
关键词 Economy-wide material flow analysis material input Environmental impact Ratio of recycled material Economy-wide material flow analysis material input Environmental impact Ratio of recycled material
下载PDF
Fatigue Behavior of High Speed Steel Roll Materials for Hot Rolling by Laser Impacting 被引量:5
6
作者 ZHOU Li SUN Da-le +1 位作者 LIU Chang-sheng WU Qiong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第6期49-52,共4页
The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples... The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed. 展开更多
关键词 high speed steel fatigue laser impacting stress concentration carbide
下载PDF
Effect of RE Modification and Heat Treatment on Impact Fatigue Property of a Wear Resistant White Cast Iron 被引量:7
7
作者 常立民 刘建华 +1 位作者 张瑞军 王继东 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第4期537-541,共5页
The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relat... The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network. 展开更多
关键词 metal materials wear resistance of white cast iron impact fatigue property rare earths
下载PDF
IMPACT-SLIDING WEAR OF MATERIALS
8
作者 魏勇强 王黎钦 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期251-258,共8页
A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever bea... A simple impact-sliding wear test rig is designed for studying the wear behavior between solid materials on a repetitive normal impact accompanied with the tangential sliding. The test rig consists of a cantilever beam forced by the dynamoelectric vibration exciter and a rotational shaft driven by a spindle. It has a widely adjustable range of testing parameters, including the impact frequency, the impact load and the sliding velocity. The avail- able maximum impact frequency, impact load and sliding velocity are 100 Hz, 200 N and 4.52 m/s, respectively. To evaluate the capability of the test rig, tests are carried out and the impact load is measured. Results show that the test rig has the good repeatability under the same test conditions and the repeatable error is less than 7%. Furthermore, non-destructive examination results by the mass loss method, two-dimensional profilometry and the scanning electron microscopy (SEM) show that the test rig can meet the demands for the impact-sliding wear. 展开更多
关键词 wear of materials impact testing aluminum alloys titanium alloys
下载PDF
Effect of Microstructure on Impact Fatigue Resistance and Impact Wear Resistance of Medium Cr-Si Cast Iron 被引量:7
9
作者 LI Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第3期47-50,共4页
A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue ... A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15%) is not high sometimes, but its cost is not low. Thus, medium Cr-Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball-on-ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr-Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr-Si cast iron is released in the as-cast state; (2) the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content im- proves the morphology of eutectic carbide; (5) there is no seeondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear. 展开更多
关键词 medium Cr-Si cast iron MICROSTRUCTURE impact fatigue impact wear
下载PDF
Modelling of spall damage in ductile materials and its application to the simulation of the plate impact on copper 被引量:4
10
作者 张凤国 周洪强 +4 位作者 胡军 邵建立 张广财 洪滔 何斌 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期378-384,共7页
A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading, which takes into account inertia, the elastic-plastic effect, and initial void siz... A statistical model of dynamic spall damage due to void nucleation and growth is proposed for ductile materials under intense loading, which takes into account inertia, the elastic-plastic effect, and initial void size. To some extent, void interaction could be accounted for in this approach. Based on this model, the simulation of spall experiments for copper is performed by using the Lagrangian finite element method. The simulation results are in good agreement with experimental data for the free surface velocity profile, stress record behind copper target, final porosity, and void concentrations across the target. The influence of elastic-plastic effect upon the damage evolution is explored. The correlation between the damage evolution and the history of the stress near the spall plane is also analyzed. 展开更多
关键词 spall damage ductile materials free surface velocity plate impact
下载PDF
Impact and Friction Sensitivity of Energetic Materials:Methodical Evaluation of Technological Safety Features 被引量:2
11
作者 Aleksandr Smirnov Oleg Voronko +1 位作者 Boris Korsunsky Tatyana Pivina 《火炸药学报》 EI CAS CSCD 北大核心 2015年第3期1-8,共8页
Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instru... Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters. 展开更多
关键词 energetic materials experimental testing friction sensitivity impact sensitivity regressive analysis safety in use methodical evaluation
下载PDF
Multi-Scale Analysis of Fretting Fatigue in Heterogeneous Materials Using Computational Homogenization 被引量:2
12
作者 Dimitra Papagianni Magd Abdel Wahab 《Computers, Materials & Continua》 SCIE EI 2020年第1期79-97,共19页
This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material ... This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method. 展开更多
关键词 Fretting fatigue multi-scale analysis computational homogenization heterogeneous materials stress analysis finite element analysis
下载PDF
A multiscale material point method for impact simulation 被引量:1
13
作者 Zhen Chen Yilong Han +2 位作者 Shan Jiang Yong Gan Thomas D. Sewell 《Theoretical & Applied Mechanics Letters》 CAS 2012年第5期10-13,共4页
To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being devel... To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being developed, within the framework of the MPM, to describe the detonation process of energetic nano-composites from molecular to continuum level so that a multiscale equation of state could be formulated. In this letter, a multiscale MPM is proposed via both hierarchical and concurrent schemes to simulate the impact response between two microrods with different nanostructures. Preliminary results are presented to illustrate that a transition region is not required between different spatial scales with the proposed approach. 展开更多
关键词 material point method multiscale simulation impact response
下载PDF
Study on the fatigue and wear characteristics of four wheel materials 被引量:3
14
作者 G.Y.Zhou J.H.Liu +2 位作者 W.J.Wang G.Wen Q.Y.Liu 《Journal of Modern Transportation》 2013年第3期182-193,共12页
The fatigue and wear characteristics of four different steel wheel materials are investigated in detail by using rolling contact fatigue and wear bench tests on a JD-1 apparatus, analyzing chemical composition and har... The fatigue and wear characteristics of four different steel wheel materials are investigated in detail by using rolling contact fatigue and wear bench tests on a JD-1 apparatus, analyzing chemical composition and hardness, and performing profile analysis and micro-morphology analysis. The wear and fatigue behavior of one of the materials under different operation speeds is also investigated. The results show that the wear resistance of the materials has a positive correlation with their carbon content, while fatigue resistance has a negative correlation. Based on hardness analysis as a function of depth into the specimen, the thickness of layers with a steep hardness gradient has a negative correlation with the initial surface hardness in the tests using different materials. The hardness increments, however, have a positive correlation with initial surface hardness. The rolling tests on one material using different rotation speeds show that the hardness increments and the thickness of layers with a steep hardness gradient increase with the rotation speed. The analyses and experimental results demonstrate that two of the four materials exhibit good wear resistance and rolling contact fatigue resistance, making them suitable for either highspeed or heavy axle railroad operations. 展开更多
关键词 Wheel material . fatigue . Wear . Hardness
下载PDF
Recent progress in developing ballistic and anti-impact materials:Nanotechnology and main approaches 被引量:1
15
作者 Shuangyan Wu Partha Sikdar Gajanan S.Bhat 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第3期33-61,共29页
With increasing international and civilian conflicts,developing advanced body armor has become an emerging field in academia and industry.Nanotechnology,by means of,incorporating nanomaterials,is considered a highly e... With increasing international and civilian conflicts,developing advanced body armor has become an emerging field in academia and industry.Nanotechnology,by means of,incorporating nanomaterials,is considered a highly effective technique to achieve this goal.It has been widely studied in defense applications owing to high strength-to-weight ratios and excellent energy absorption capability of nanomaterials.Hence,this review encompasses the latest application of nanotechnology involving nanomaterials and nanocomposites in ballistic and anti-impact fields.Additionally,this paper outlines fiber materials utilized,and alternative approaches adopted to develop robust non-metal bullet-proof materials.These approaches include shear thickening fluids(STFs)incorporation,sandwich structures,polymer matrix composites(PMCs),and textile structure optimization.Meanwhile,ballistic-related performances of various materials developed using single or hybrid techniques are collected and compared. 展开更多
关键词 materialS composites impact
下载PDF
Decision Support Strategy in Selecting Natural Fiber Materials for Automotive Side-Door Impact Beam Composites 被引量:3
16
作者 M.A.Shaharuzaman S.M.Sapuan +1 位作者 M.R.Mansor M.Y.M.Zuhri 《Journal of Renewable Materials》 SCIE 2019年第10期997-1010,共14页
The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,espec... The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process. 展开更多
关键词 materials selection natural fiber side-door impact beam Analytic Hierarchy Process(AHP) VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)
下载PDF
Fatigue analysis of closed-cell aluminium foam using different material models 被引量:1
17
作者 M.ULBIN S.GLODEŽ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2787-2796,共10页
The fatigue analyses of AlSi7 closed-cell aluminium foam were performed using a real porous model and three different homogenised material models:crushable foam model,isotropic hardening model and kinematic hardening ... The fatigue analyses of AlSi7 closed-cell aluminium foam were performed using a real porous model and three different homogenised material models:crushable foam model,isotropic hardening model and kinematic hardening model.The numerical analysis using all three homogenised material models is based on the available experimental results previously determined from fatigue tests under oscillating tensile loading with the stress ratio R=0.1.The obtained computational results have shown that both isotropic and kinematic hardening models are suitable to analyse the fatigue behaviour of closed-cell aluminium foam.Besides,the kinematic hardening material model has demonstrated significantly shorter simulation time if compared to the isotropic hardening material model.On the other hand,the crushable foam model is recognized as an inappropriate approach for the fatigue analyses under tension loading conditions. 展开更多
关键词 closed-cell aluminium foams fatigue numerical analysis material model
下载PDF
Closed-form solution for shock wave propagation in density-graded cellular material under impact 被引量:1
18
作者 Vijendra Gupta Addis Kidane Michael Sutton 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第5期252-259,共8页
Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,us... Density-graded cellular materials have tremendous potential in structural applications where impact resistance is required.Cellular materials subjected to high impact loading result in a compaction type deformation,usually modeled using continuum-based shock theory.The resulting governing differential equation of the shock model is nonlinear,and the density gradient further complicates the problem.Earlier studies have employed numerical methods to obtain the solution.In this study,an analytical closed-form solution is proposed to predict the response of density-graded cellular materials subjected to a rigid body impact.Solutions for the velocity of the impinging rigid body mass,energy absorption capacity of the cellular material,and the incident stress are obtained for a single shock propagation.The results obtained are in excellent agreement with the existing numerical solutions found in the literature.The proposed analytical solution can be potentially used for parametric studies and for effectively designing graded structures to mitigate impact. 展开更多
关键词 Functionally graded cellular material Analytical modeling impact response Closed-form solution Energy absorption Density gradient
下载PDF
Viscosity Transient Phenomenon in Drop Impact Testing of Soft Material 被引量:1
19
作者 Chen Liu Yukio Fujimoto +2 位作者 Yoshikazu Tanaka Eiji Shintaku Toshiki Nakanishi 《World Journal of Mechanics》 2016年第5期181-191,共11页
The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. ... The authors carried out drop impact tests for several soft materials under a flat frontal impact condition in which a drop hammer with a flat bottom surface strikes a plate-like soft material in the normal direction. The experimental results indicated that the impact force waveforms of soft materials consisted of a thorn-shaped waveform and a subsequent mountain-shaped waveform. The thorn-shaped waveform was strongly affected by the strain rate. In the present study, the occurrence mechanism of this distinctive waveform was discussed from the viewpoint of the viscosity transient phenomenon. A standard linear solid (SLS) model in which the viscosity transient phenomenon was considered was applied to the simulation. Some features of the impact force waveform of soft materials could be explained by the SLS model. Furthermore, the thorn-shape waveform could also be observed in the impact force waveforms of human skin and free-falling hollow balls. 展开更多
关键词 Strain Rate Dependence Soft material impact Force Thorn-Shape Waveform Viscosity Transient Standard Linear Solid (SLS) Model Flat Frontal impact
下载PDF
Impact Fatigue Behavior of ZrN/Zr-N/Zr Coatings on H13 Steel by CFUBMSIP
20
作者 姚晓红 HUO Huidan +1 位作者 BAO Mingdong 田林海 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期137-142,共6页
ZrN/Zr-N/Zr coatings were deposited on H13 steel by close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. The effect of two main parameters such as OEM and bias voltage for the CFUBMSIP proce... ZrN/Zr-N/Zr coatings were deposited on H13 steel by close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. The effect of two main parameters such as OEM and bias voltage for the CFUBMSIP process on the microstructure, mechanical properties and impact fatigue behavior of the coatings was investigated. The results indicate that with OEM increasing from 55% to 65% the surface particles size of the coatings increases while it remains almost similar when the bias voltage changes from 60 to 75 V. An aggregation of the particles occurs on the coatings surface, with further increasing the OEM and bias voltage to 75% and 90 V, respectively. The coatings show a columnar grain structure and are mainly composed of two phases of ZrN and Zr. The coating hardness decreases with OEM value increasing and both the coating hardness and modulus go up with bias voltage. The coating deposited under OEM of 65% and bias voltage of 75 V shows the best impact fatigue property. 展开更多
关键词 ZrN/Zr-N/Zr coatings CFUBMSIP MICROSTRUCTURE HARDNESS impact fatigue
下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部