Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of...Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.展开更多
In order to further analyze the influence of clearance on the kinematic performance of spatial linkage weft insertion mechanism,it is necessary to study the dynamic characteristics of contact impact force model with t...In order to further analyze the influence of clearance on the kinematic performance of spatial linkage weft insertion mechanism,it is necessary to study the dynamic characteristics of contact impact force model with the variable stiffness and damping coefficient.Firstly,the parameters in the output process of the system are solved by describing of the flexible joint clearance.Then,based on Lankarani-Nikravesh contact force model,the contact impact stiffness and damping coefficient is modified from fixed values to time-varying coefficients.The dynamic model of spatial linkage weft insertion mechanism with modified clearance is established by Lagrange method,and the dynamic characteristics of the system are calculated.The results show that the joint clearance can directly affect the output performance of the mechanism.With the increase of the clearance value,the curve fluctuations of acceleration,driving torque and collision force are obvious,and it will be further intensified with the increase of spindle speed,which greatly affects the stability of mechanism and fabric quality.Finally,the virtual prototype is established by the SolidWorks software and simulated by the ADAMS software.The simulation results are compared with the numerical results,which verifies the accuracy of the modeling method in this paper.展开更多
基金supported by a grant from the International S cience and Technology Cooperation Projects of China,No.2011DFG33430
文摘Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.
基金National Natural Science Foundation of China(No.11402186)Innovative Research Team in University of Tianjin,China(No.TD13-5037)Natural Science Foundation of Tianjin,China(Nos.14JCQNJC05600 and 18JCQNJC05300)。
文摘In order to further analyze the influence of clearance on the kinematic performance of spatial linkage weft insertion mechanism,it is necessary to study the dynamic characteristics of contact impact force model with the variable stiffness and damping coefficient.Firstly,the parameters in the output process of the system are solved by describing of the flexible joint clearance.Then,based on Lankarani-Nikravesh contact force model,the contact impact stiffness and damping coefficient is modified from fixed values to time-varying coefficients.The dynamic model of spatial linkage weft insertion mechanism with modified clearance is established by Lagrange method,and the dynamic characteristics of the system are calculated.The results show that the joint clearance can directly affect the output performance of the mechanism.With the increase of the clearance value,the curve fluctuations of acceleration,driving torque and collision force are obvious,and it will be further intensified with the increase of spindle speed,which greatly affects the stability of mechanism and fabric quality.Finally,the virtual prototype is established by the SolidWorks software and simulated by the ADAMS software.The simulation results are compared with the numerical results,which verifies the accuracy of the modeling method in this paper.