Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and im...Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.展开更多
To avoid the numerical oscillation of the penalty method andnon-compatibility with ex- plicit operators of conventional Lagrangemultiplier methods used in transient contact problems to en- forcesurface contact conditi...To avoid the numerical oscillation of the penalty method andnon-compatibility with ex- plicit operators of conventional Lagrangemultiplier methods used in transient contact problems to en- forcesurface contact conditions, a new approach to enforcing surfacecontact constraints for the tran- sient nonlinear finite elementproblems, referred to as 'the reduced augmented Lagrangianbi-conjugate gradient method (ALCG)', is developed in this paper.Based on the nonlinear constrained optimization theory and iscompatible with the explicit time integration scheme, this approachcan also be used in implicit scheme naturally.展开更多
The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading ...The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading parameter for finite time instability observed in experiments without the need of specifying any prescribed threshold for al- lowable responses. Based on an energy balance analysis of a simple dynamic system, this paper proposes a general criterion for finite time stability which indicates that finite time stability of a linear dynamic system with constant coefficients during a given time interval [0, tf] is guaranteed provided the product of its maximum growth rate (determined by the maximum eigen-root pl 〉0) and the duration tf does not exceed 2, i.e., pltf 〈2. The proposed criterion (pltf=2) is applied to several problems of impacted buckling of elastic columns: (i) an elastic column impacted by a striking mass, (ii) longitudinal impact of an elastic column on a rigid wall, and (iii) an elastic column compressed at a constant speed ("Hoff problem"), in which the time-varying axial force is replaced approximately by its average value over the time duration. Comparison of critical parameters predicted by the proposed criterion with available experimental and simulation data shows that the proposed criterion is in robust reasonable agreement with the known data, which suggests that the proposed simple criterion (pltf---2) can be used to estimate critical parameters for finite time stability of dynamic systems governed by linear equations with constant coefficients.展开更多
A reciprocal theorem of dynamics for potential flow problems is first derived by means of the Laplace transform in which the compressibility of water is taken into account. Based on this theorem, the corresponding tim...A reciprocal theorem of dynamics for potential flow problems is first derived by means of the Laplace transform in which the compressibility of water is taken into account. Based on this theorem, the corresponding time-space boundary integral equation: is obtained. Then, a set of time domain boundary element equations with recurrence form is immediately formulated through discretization in both time and boundary. After having carried out the numerical calculation two solutions are found in which a rigid semicircular cylinder and a rigid wedge with infinite length suffer normal impact on the surface of a half-space fluid. The results show that the present method is more efficient than the previous ones.展开更多
文摘Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.
基金State Education Commission Doctoral FoundationNatural Science Foundation of Liaoning Province
文摘To avoid the numerical oscillation of the penalty method andnon-compatibility with ex- plicit operators of conventional Lagrangemultiplier methods used in transient contact problems to en- forcesurface contact conditions, a new approach to enforcing surfacecontact constraints for the tran- sient nonlinear finite elementproblems, referred to as 'the reduced augmented Lagrangianbi-conjugate gradient method (ALCG)', is developed in this paper.Based on the nonlinear constrained optimization theory and iscompatible with the explicit time integration scheme, this approachcan also be used in implicit scheme naturally.
基金Project supported by the Natural Science and Engineering Research Council (NSERC) of Canada (No.NSERC-RGPIN204992)
文摘The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading parameter for finite time instability observed in experiments without the need of specifying any prescribed threshold for al- lowable responses. Based on an energy balance analysis of a simple dynamic system, this paper proposes a general criterion for finite time stability which indicates that finite time stability of a linear dynamic system with constant coefficients during a given time interval [0, tf] is guaranteed provided the product of its maximum growth rate (determined by the maximum eigen-root pl 〉0) and the duration tf does not exceed 2, i.e., pltf 〈2. The proposed criterion (pltf=2) is applied to several problems of impacted buckling of elastic columns: (i) an elastic column impacted by a striking mass, (ii) longitudinal impact of an elastic column on a rigid wall, and (iii) an elastic column compressed at a constant speed ("Hoff problem"), in which the time-varying axial force is replaced approximately by its average value over the time duration. Comparison of critical parameters predicted by the proposed criterion with available experimental and simulation data shows that the proposed criterion is in robust reasonable agreement with the known data, which suggests that the proposed simple criterion (pltf---2) can be used to estimate critical parameters for finite time stability of dynamic systems governed by linear equations with constant coefficients.
基金This project is financially supported by the National Education Foundation of China.
文摘A reciprocal theorem of dynamics for potential flow problems is first derived by means of the Laplace transform in which the compressibility of water is taken into account. Based on this theorem, the corresponding time-space boundary integral equation: is obtained. Then, a set of time domain boundary element equations with recurrence form is immediately formulated through discretization in both time and boundary. After having carried out the numerical calculation two solutions are found in which a rigid semicircular cylinder and a rigid wedge with infinite length suffer normal impact on the surface of a half-space fluid. The results show that the present method is more efficient than the previous ones.