期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ECC动态拉伸力学特性试验研究与数值模拟
1
作者 李秀地 罗银剑 +2 位作者 崔亚娇 傅鑫亮 蔡涛 《振动与冲击》 EI CSCD 北大核心 2023年第9期161-167,188,共8页
基于分离式霍普金森压杆(split Hopkinson pressure bars,SHPB)装置对基体材料、不同纤维掺量的ECC(engineered cementitious composites)在R1(5.8~6.9 s^(-1))、R2(9.7~13.3 s^(-1))、R3(14.4~18.9 s^(-1))、R4(19.2~28.5 s^(-1))4个... 基于分离式霍普金森压杆(split Hopkinson pressure bars,SHPB)装置对基体材料、不同纤维掺量的ECC(engineered cementitious composites)在R1(5.8~6.9 s^(-1))、R2(9.7~13.3 s^(-1))、R3(14.4~18.9 s^(-1))、R4(19.2~28.5 s^(-1))4个应变率范围下进行冲击劈裂拉伸试验。探究基体材料、ECC在不同应变率下的动态力学特性及纤维掺量对ECC力学性能的影响。试验表明:基体材料、ECC的动态劈裂拉伸强度均具有显著的应变率增强效应;当纤维掺量小于2.3%时,纤维掺量与动态劈裂抗拉强度呈现出正相关。此外,通过试验发现基体材料的吸能能力与试件的破碎形态有关,随着纤维掺量的增加ECC破碎程度减小,微裂缝增多。通过拟合试验数据修正了ECC的应变率效应,并将修正后的模型嵌入到LS-DYNA软件中,基于新建模型对试验的全过程进行数值模拟分析,相较于试验数据,模拟结果最大误差为8%。最小误差为2.3%,试件的破坏形态吻合程度较高,数值模拟结果表明新建ECC材料模型能够较好表现ECC动态拉伸特性。 展开更多
关键词 ECC 冲击劈裂拉伸 耗能 霍普金森压杆(SHPB) 破坏形态
下载PDF
玄武岩纤维高延性水泥基复合材料的动态力学性能 被引量:12
2
作者 张娜 周健 +2 位作者 徐名凤 李辉 马国伟 《爆炸与冲击》 EI CAS CSCD 北大核心 2020年第5期42-50,共9页
利用玄武岩纤维和水泥基材料,通过一定配比融合制成了在静态拉伸试验中呈现多缝开裂、应变硬化、极限拉伸应变0.5%以上的玄武岩纤维高延性水泥基复合材料(basalt fiber engineered cementitious composites, BF-ECCs)。用分离式霍普金... 利用玄武岩纤维和水泥基材料,通过一定配比融合制成了在静态拉伸试验中呈现多缝开裂、应变硬化、极限拉伸应变0.5%以上的玄武岩纤维高延性水泥基复合材料(basalt fiber engineered cementitious composites, BF-ECCs)。用分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)装置对不同玄武岩纤维掺量的水泥基复合材料进行动态压缩和动态劈裂试验。结果表明:(1)在压、拉两种应力状态下,玄武岩纤维对水泥基复合材料的静态强度、动态强度均有增强,且高应变率下玄武岩纤维对抗压强度动态增幅较小,对劈裂强度动态增幅较大;(2) BF-ECC的抗压强度和劈裂强度均随应变率升高而显著提高,两者均可以采用动态增强因子(dynamic increase factor, DIF)反映动态强度的增幅,但劈裂强度的应变率敏感性强于抗压强度;(3)依据试验得到的普通水泥混凝土速率敏感性的CEB-FIP方程(2010)不适用于BF-ECCs。 展开更多
关键词 玄武岩纤维 BF-ECC 静态压缩 静态拉伸 动态压缩 动态劈裂
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部