The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the...The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
Rockfall poses a great threat to buildings and personal security. To understand the dynamic characteristics of rockfalls is a prerequisite for disaster prevention and assessment. Models for rockfalls in different form...Rockfall poses a great threat to buildings and personal security. To understand the dynamic characteristics of rockfalls is a prerequisite for disaster prevention and assessment. Models for rockfalls in different forms are established based on the theory of rigid body motion. The equivalent velocity considering the rotational effect is determined by the energy ratio. Besides, considering plastic deformation and nonlinear hardening, the maximum impact force is estimated based on the Hertz contact theory. Then, a case study is carried out to illustrate the applicability of the model and sensitive analyses on some affecting parameters are also made. Calculation results show that the maximum impact force increases with the increasing of incident velocity, angle and slope gradient reflected by the changing of energy ratio. Moreover, the model for the estimation of maximum impact force is validated by two different scales of experiments and compared with other theoretical models. Simulated maximum impact forces agree well with the experiments.展开更多
To overcome the difficulty in directly measuring the impact force of a mechanical press, the inverse theory is employed to reconstruct the impact force from the corresponding response data in time domain. The nature o...To overcome the difficulty in directly measuring the impact force of a mechanical press, the inverse theory is employed to reconstruct the impact force from the corresponding response data in time domain. The nature of ill-posedness of impact force reconstruction is explored through singular value decomposition (SVD) and the Tikhonov regularization is utilized to deal with the ill-posedness, in which the optimal parameter is chosen in light of the L-curve criterion and the generalized cross- validation (GCV). The experimentally measured strain responses of upper and lower dies of the press are chosen as source data for impact force reconstruction, and the corresponding numerical results are compared with the experimental measurements, which verifies the effectiveness of the reconstruction method.展开更多
When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the ope...When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the operators to whole body vibrations (WBV). The main cause of such truck vibrations is the large impact force due to the gravity dumping of large tonnage passes. Therefore a rigorous mathematical model has been developed for the impact force containing all the necessary factors upon which it depends. Latter, a thorough analysis shows that percentage reduction of 7.19%, 9.40%, 13.27%, 14.8%, 17.30% and 18.13% can he achieved by reducing the dumping distance to 6.33 m, 6.0 m, 5.5 m, 5.33 m, 5.0 m and 4.9 m, respectively, as compared to when the dumping distance was 7.33 m. Even more reduction in the magnitude of impact force can he observed if the shovel pass gets divided into more than two sub-passes. Therefore, these models can he used to figure out the number of sub-passes into which a single ore pass can he divided and/or the extent to which the dumping distance can he reduced which would reduce the impact force significantly enough to obtain safer yet economic operations.展开更多
In the present study,the formula calculating ship impact forces on light wharf structures is presented when the elastic deformation of the hull and the pier structures as well as the nonlinear deformation of the fende...In the present study,the formula calculating ship impact forces on light wharf structures is presented when the elastic deformation of the hull and the pier structures as well as the nonlinear deformation of the fender are taken into account. The ship impact forces are statistically analyzed with the Monte-Carlo method according to the known probability distribution types of random variables.Based on the simulated results, the distribution of ship impact forces which is characterized by bimodal distribution can be expressed as the combining probability density function of beta distribution and normal distribution. The corresponding parameters of the probability density function can be estimated with the maximum likelihood method. The results show that ship impact forces on light wharf structures follow the distribution of type I extreme value.The mean coefficient and variation coefficient are 1.11 and 0.008 respectively during 50 years of design reference period.展开更多
In order to identify the location and magnitude of the impact force accurately,determine the damage range of the structure and accelerate the health monitoring of key components of the composite,this paper studies the...In order to identify the location and magnitude of the impact force accurately,determine the damage range of the structure and accelerate the health monitoring of key components of the composite,this paper studies the location and magnitude of the impact force of composite plates by an inverse method.Firstly,a PZT sensor mounted on the material plate is used to collect the response signal generated by the impact force,which is from several impact locations,and establish transfer functions between the impact location and the PZT sensor.Secondly,this paper applies several forces to any location on the material plate,and collects the corresponding response signals,and reconstructs the impact force of several locations in turn.Finally,according to the reconstruction result of each location,the correct impact location is identified.Then,an improved regularization method is used to optimize the reconstructed impact force and accurate the magnitude of the impact force.The comparison experiments prove that the recognition error of this method is smaller.展开更多
Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of...Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.展开更多
The normal impact of an elastic initially static beam of finite length on an elastic foundation by a finite elastic rod with initial velocity is investigated in this paper. The approximate formulas for the impact forc...The normal impact of an elastic initially static beam of finite length on an elastic foundation by a finite elastic rod with initial velocity is investigated in this paper. The approximate formulas for the impact force are obtained by the Galerkin principle.Some discussions are made and conclusions are drawn.展开更多
In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Me...In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well.展开更多
Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partia...Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche.展开更多
To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate t...To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate the high shockwave of truck cab under the shovel loading. Discrete element method was utilized to accurately estimate the impacting force on the truck body. Based on the ISO 2631-5 criteria, the Sed is about 0.56 MPa in both models, which means that the dump operators have a high probability of adverse health effects over long-term exposure to these vibrations. The 4-DOF operator model was built to investigate the biodynamic response of seated-human body exposed to WBV in terms of the transmission of vibrations through the body. The results show that the response peak is in the frequency range of 4-6 Hz corresponding to the primary body resonant frequency.展开更多
Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer pr...Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.展开更多
A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes...A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle.展开更多
To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loa...To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loads. A device was deployed for a direct measurement of the impact force at the upstream face of the dams. The model dam bases were anchored to prevent displacement. The experimental results indicate that the top part of the concrete dam is a weak zone, and the impact failure initiates with a fracture on the top of the dam. The peak value of impact stress increases when the second crack appears in the concrete dam from the upstream face to the downstream face. And, the level of the second crack in the dam body is lower as the peak value of impact stress increases. In this study, dynamic analysis was conducted by calculating the results to verify the effectiveness of a device to directly measure the impact force. This method may be used to approximately forecast the damage of concrete dam and may also be useful in other engineering applications.展开更多
This paper presents the effect of thickness of Buffer layer on the safety of cut-and-cover tunnel under the given magnitude and height of rockfall, and the limit load of the structure. To establish calculating models ...This paper presents the effect of thickness of Buffer layer on the safety of cut-and-cover tunnel under the given magnitude and height of rockfall, and the limit load of the structure. To establish calculating models of rockfall in different conditions, the dynamics of the fall down to the surface of the slope is taken into account and the exterior characteristics of the rockfall is analyzed. We have derived the formula for calculating velocity of rocks before and after collision, calculated the impact load upon the structures below and the limit load, and compared the impact force and limit load to judge the safety of the structure. Finally, the validity of models is approved by the safety evaluation of cut-and-cover tunnel in the mouth of Heshang Mountain in Nandan County.展开更多
The prevention and the reduction of the rockfall are the common measures of the prevention and the reduction of disasters.When the rock-shed resists the impact of the rockfall,the force that acts on the structure cons...The prevention and the reduction of the rockfall are the common measures of the prevention and the reduction of disasters.When the rock-shed resists the impact of the rockfall,the force that acts on the structure consists of the cushion dead load and the impact-induced load,of which the dynamic process of the propagation of the impactinduced load is complex.Therefore,we conducted a numerical study to investigate the impact of the rockfall.Considering the highly discrete characteristic of the sand,we developed a numerical model on the basis of the discrete element method(DEM).The numerical model,which simulation results were validated by the results of real-scale experiments,was used to investigate the dynamic response of the impact force of the rockfall and the transmission of the impact force under the different magnitude of the falling height and the different thickness of the sand cushion.The results of our study indicated that the cushion thickness had little effect on the impact of the rockfall,and the dense sand cushion generated higher impact force than did the loose sand cushion.Although the high thickness enhanced the buffer performance of the sand cushion,the additional force induced by the dead load of sand cushion was significant.Therefore,to determine the appropriate thickness of the sand cushion,we suggested designers consider the buffer performance and the dead load of the sand cushion.The analysis presented in this paper provided a practical estimation of the impact-induced force of the thick sand cushion.展开更多
An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For thi...An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.展开更多
基金supported by the National Natural Science Foundation of China(U2244227)National Key R&D Program of China(2023YFC3007205)National Natural Science Foundation of China(No.42271013).
文摘The boulder impact force in debris flow is generally calculated by static methods such as the cantilever beam models.However,these methods cannot describe the dynamic scenario of boulder collision on structures,so the inertia and damping effects of the structures are not involved causing an overestimation on the boulder impact force.In order to address this issue,a dynamic-based model for calculating the boulder impact force of a debris flow was proposed in this study,and the dynamic characteristics of a cantilever beam with multiple degrees of freedom under boulder collision were investigated.By using the drop-weight method to simulate boulders within debris flow,seven experiments of drop-weight impacting the cantilever beam were used to calibrate the error of the dynamicbased model.Results indicate that the dynamic-based model is able to reconstruct the impact force history on the cantilever beam during impact time and the error of dynamic-based model is 15.3%in calculating boulder impact force,significantly outperforming the cantilever beam model’s error of 285%.Therefore,the dynamic-based model can overcome the drawbacks of the static-based models and provide a more reliable theoretical foundation for the engineering design of debris flow control structures.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
基金supported by the National Natural Science Foundation of China (41472272)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)
文摘Rockfall poses a great threat to buildings and personal security. To understand the dynamic characteristics of rockfalls is a prerequisite for disaster prevention and assessment. Models for rockfalls in different forms are established based on the theory of rigid body motion. The equivalent velocity considering the rotational effect is determined by the energy ratio. Besides, considering plastic deformation and nonlinear hardening, the maximum impact force is estimated based on the Hertz contact theory. Then, a case study is carried out to illustrate the applicability of the model and sensitive analyses on some affecting parameters are also made. Calculation results show that the maximum impact force increases with the increasing of incident velocity, angle and slope gradient reflected by the changing of energy ratio. Moreover, the model for the estimation of maximum impact force is validated by two different scales of experiments and compared with other theoretical models. Simulated maximum impact forces agree well with the experiments.
基金Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2008030)
文摘To overcome the difficulty in directly measuring the impact force of a mechanical press, the inverse theory is employed to reconstruct the impact force from the corresponding response data in time domain. The nature of ill-posedness of impact force reconstruction is explored through singular value decomposition (SVD) and the Tikhonov regularization is utilized to deal with the ill-posedness, in which the optimal parameter is chosen in light of the L-curve criterion and the generalized cross- validation (GCV). The experimentally measured strain responses of upper and lower dies of the press are chosen as source data for impact force reconstruction, and the corresponding numerical results are compared with the experimental measurements, which verifies the effectiveness of the reconstruction method.
文摘When shovels load the dump trucks with over 100-ton passes under gravity dumping conditions, they will create a large impact force on the dump truck body which generates high frequency shock waves which expose the operators to whole body vibrations (WBV). The main cause of such truck vibrations is the large impact force due to the gravity dumping of large tonnage passes. Therefore a rigorous mathematical model has been developed for the impact force containing all the necessary factors upon which it depends. Latter, a thorough analysis shows that percentage reduction of 7.19%, 9.40%, 13.27%, 14.8%, 17.30% and 18.13% can he achieved by reducing the dumping distance to 6.33 m, 6.0 m, 5.5 m, 5.33 m, 5.0 m and 4.9 m, respectively, as compared to when the dumping distance was 7.33 m. Even more reduction in the magnitude of impact force can he observed if the shovel pass gets divided into more than two sub-passes. Therefore, these models can he used to figure out the number of sub-passes into which a single ore pass can he divided and/or the extent to which the dumping distance can he reduced which would reduce the impact force significantly enough to obtain safer yet economic operations.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2007AA11Z130)
文摘In the present study,the formula calculating ship impact forces on light wharf structures is presented when the elastic deformation of the hull and the pier structures as well as the nonlinear deformation of the fender are taken into account. The ship impact forces are statistically analyzed with the Monte-Carlo method according to the known probability distribution types of random variables.Based on the simulated results, the distribution of ship impact forces which is characterized by bimodal distribution can be expressed as the combining probability density function of beta distribution and normal distribution. The corresponding parameters of the probability density function can be estimated with the maximum likelihood method. The results show that ship impact forces on light wharf structures follow the distribution of type I extreme value.The mean coefficient and variation coefficient are 1.11 and 0.008 respectively during 50 years of design reference period.
基金This work was supported by the National Natural Science Foundation of China(61672290),College students practice and innovation training project of Jiangsu province.
文摘In order to identify the location and magnitude of the impact force accurately,determine the damage range of the structure and accelerate the health monitoring of key components of the composite,this paper studies the location and magnitude of the impact force of composite plates by an inverse method.Firstly,a PZT sensor mounted on the material plate is used to collect the response signal generated by the impact force,which is from several impact locations,and establish transfer functions between the impact location and the PZT sensor.Secondly,this paper applies several forces to any location on the material plate,and collects the corresponding response signals,and reconstructs the impact force of several locations in turn.Finally,according to the reconstruction result of each location,the correct impact location is identified.Then,an improved regularization method is used to optimize the reconstructed impact force and accurate the magnitude of the impact force.The comparison experiments prove that the recognition error of this method is smaller.
基金supported by a grant from the International S cience and Technology Cooperation Projects of China,No.2011DFG33430
文摘Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.
文摘The normal impact of an elastic initially static beam of finite length on an elastic foundation by a finite elastic rod with initial velocity is investigated in this paper. The approximate formulas for the impact force are obtained by the Galerkin principle.Some discussions are made and conclusions are drawn.
基金supported by the Sichuan Science and Technology Program - China (Grant no. 2023ZYD0149)National Natural Science Foundation of China (Grant no. U22A20603)CAS "Light of West China" Program - China (Grant No. Fangwei Yu)
文摘In order to advance the understanding of the impact dynamics of granular flow in complex geological settings,this paper studied the impact dynamics of granular flow on rigid barriers with a number of Material Point Method(MPM)numerical tests.The impact behavior of granular flow on a rigid barrier was characterized by the initial dynamic impact stage,dynamic surge impact stage,compression impact stage and static stage of granular flow,where the impact force of granular flow was comprised of the dynamic and static forces of granular flow.The impact behavior of granular flow on a rigid barrier was characterized by the states of the fast or slow impact behavior of granular flow.The angle of slope and aspect ratio of granular soil greatly affected the impact behavior of granular flow on a column rigid barrier,where a power model was proposed to quantify the residual(Fnr)-over-maximum(Fnmax)normal impact force ratio of granular flow Fnr⁄Fnmax incorporating the effects of the angle of slope and aspect ratio of granular soil.With the increase of the column rigid barrier up to the semi-infinite column rigid barrier,the impact dynamics of granular flow gradually increased up to a maximum by progressively transforming the overflow into the dynamic surge impact of the incoming flow on the rigid barrier to capture more granular soil of granular flow against the rigid barrier.Presence of water in granular flow,i.e.,a mixture of solid and liquid in granular flow,yielded a dynamic coupling contribution of the solid and liquid,being accompanied by the whole dynamic process of granular flow,on the impact behavior of granular flow on a rigid barrier,where the liquid-phase material of granular flow,i.e.,the water,was predominant to contribute on the normal impact force of granular flow in comparison with the solid-phase material of granular flow.In addition,other factors,e.g.,the shape of rigid barrier(i.e.,the column barrier,arch barrier and circle barrier),and the gravity(i.e.,in the gravitational environment of the Moon,Earth and Mars),greatly affected the impact behavior of granular flow on a rigid barrier as well.
基金Hunan Provincial key Laboratory of key Technology on Hydropower Development Open Research Fund (PKLHD202203)
文摘Rock avalanches are generally difficult to prevent and control due to their high velocities and the extensive destruction they cause.However,barrier structures constructed along the path of a rock avalanche can partially mitigate the magnitudes and consequences of such catastrophic events.We selected a rock avalanche in Nayong County,Guizhou Province,China as a case to study the effect of the location and height of a retaining wall on the dynamic characteristics of rock avalanche by using both actual terrain-based laboratory-model tests and coupled PFC3D-FLAC3D numerical simulations.Our findings demonstrate that a retaining wall can largely block a rock avalanche and its protective efficacy is significantly influenced by the integrity of the retaining wall.Coupled numerical simulation can serve as a powerful tool for analyzing the interaction between a rock avalanche and a retaining wall,facilitating precise observations of its deformation and destruction.The impact-curve characteristics of the retaining wall depend upon whether or not the rock avalanche-induced destruction is taken into account.The location of the retaining wall exerts a greater influence on the outcome compared to the height and materials of the retaining wall,while implementing a stepped retaining-wall pattern in accordance with the terrain demonstrates optimal efficacy in controlling rock avalanche.
基金Project(2006BAB11B03)supported by the National Key Technology Research and Development Program of ChinaProject(Z1011030055010004)supported by Beijing Municipal Science Program of China
文摘To evaluate the operator health risk exposed to whole-body vibration(WBV) while the electric-shovel loads the ore on the truck body, the semi-truck mathematical model and 3-D virtual prototype were built to simulate the high shockwave of truck cab under the shovel loading. Discrete element method was utilized to accurately estimate the impacting force on the truck body. Based on the ISO 2631-5 criteria, the Sed is about 0.56 MPa in both models, which means that the dump operators have a high probability of adverse health effects over long-term exposure to these vibrations. The 4-DOF operator model was built to investigate the biodynamic response of seated-human body exposed to WBV in terms of the transmission of vibrations through the body. The results show that the response peak is in the frequency range of 4-6 Hz corresponding to the primary body resonant frequency.
基金financial support from the Project of National Science Foundation of China(Grant No.41272346)the National Outstanding Youth Funds(Grant No.41225011)+2 种基金financial support from the Science & Technology Research Plan of China Railway Eryuan Engineering Group CO.LTD (Grant No.13164196(13-15))the Project of National Science Foundation of China(Grant Nos. 41472293,91430105)"hundred talents" program of CAS
文摘Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.
基金Project(2011CB706800)supported by the National Basic Research Program of China
文摘A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle.
基金The National Science Foundation of China under Grant No.51121005
文摘To study the effect of a strong underwater shock wave on a concrete dam, this research aims to improve hammer impact methods in model tests. Six 1:200 scale models were designed and tested under distributed impact loads. A device was deployed for a direct measurement of the impact force at the upstream face of the dams. The model dam bases were anchored to prevent displacement. The experimental results indicate that the top part of the concrete dam is a weak zone, and the impact failure initiates with a fracture on the top of the dam. The peak value of impact stress increases when the second crack appears in the concrete dam from the upstream face to the downstream face. And, the level of the second crack in the dam body is lower as the peak value of impact stress increases. In this study, dynamic analysis was conducted by calculating the results to verify the effectiveness of a device to directly measure the impact force. This method may be used to approximately forecast the damage of concrete dam and may also be useful in other engineering applications.
文摘This paper presents the effect of thickness of Buffer layer on the safety of cut-and-cover tunnel under the given magnitude and height of rockfall, and the limit load of the structure. To establish calculating models of rockfall in different conditions, the dynamics of the fall down to the surface of the slope is taken into account and the exterior characteristics of the rockfall is analyzed. We have derived the formula for calculating velocity of rocks before and after collision, calculated the impact load upon the structures below and the limit load, and compared the impact force and limit load to judge the safety of the structure. Finally, the validity of models is approved by the safety evaluation of cut-and-cover tunnel in the mouth of Heshang Mountain in Nandan County.
基金Sichuan Transportation Science and Technology Project(Grant Nos.2020-MS3-101/2020-B-01 and 2019-ZL-12 and 2018-B-03)the Science and Technology Department of Sichuan Province(Nos.2021YFH0048 and 2021YFH0118).
文摘The prevention and the reduction of the rockfall are the common measures of the prevention and the reduction of disasters.When the rock-shed resists the impact of the rockfall,the force that acts on the structure consists of the cushion dead load and the impact-induced load,of which the dynamic process of the propagation of the impactinduced load is complex.Therefore,we conducted a numerical study to investigate the impact of the rockfall.Considering the highly discrete characteristic of the sand,we developed a numerical model on the basis of the discrete element method(DEM).The numerical model,which simulation results were validated by the results of real-scale experiments,was used to investigate the dynamic response of the impact force of the rockfall and the transmission of the impact force under the different magnitude of the falling height and the different thickness of the sand cushion.The results of our study indicated that the cushion thickness had little effect on the impact of the rockfall,and the dense sand cushion generated higher impact force than did the loose sand cushion.Although the high thickness enhanced the buffer performance of the sand cushion,the additional force induced by the dead load of sand cushion was significant.Therefore,to determine the appropriate thickness of the sand cushion,we suggested designers consider the buffer performance and the dead load of the sand cushion.The analysis presented in this paper provided a practical estimation of the impact-induced force of the thick sand cushion.
基金the support of the National Natural Science Foundation of China (Grant No. 51309179)the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA051705)+2 种基金the International S&T Cooperation Program of China (Grant No. 2012DFA70490)the State Key Laboratory of Hydraulic Engineering Simulation and Safety (Tianjin University)the Tianjin Municipal Natural Science Foundation (Grant Nos. 14JCQNJC07000 and 13JCYBJC19100)
文摘An innovative floating mooring system with two or more independent floating mooring platforms in the middle and one rigid platform on each side is proposed for improving efficiency and safety in shallow water. For this new system, most of collision energy is absorbed through the displacement of floating platforms. In order to illustrate the validity of the system, a series of model tests were conducted at a scale of 1:40. The coupled motion characteristics of the floating mooring platforms were discussed under regular and irregular waves, and the influences of wave direction and other characteristics on dynamic response of the system were analyzed. The results show that the mooring system is safest at 0° of wave incident angle, whereas the most dangerous mooring state occurs at 90° of wave incident angle. Motion responses increase with the increase of wave height, but are not linearly related to changes in wave height.