Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.I...Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks.展开更多
In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compe...In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This ...Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method.展开更多
The hydraulic parallel manipulator combines the high-power density of the hydraulic system and high rigidity of the parallel mechanism with excellent load-carrying capacity.However,the high-precision trajectory tracki...The hydraulic parallel manipulator combines the high-power density of the hydraulic system and high rigidity of the parallel mechanism with excellent load-carrying capacity.However,the high-precision trajectory tracking control of the hydraulic parallel manipulator is challenged by the coupling dynamics of the parallel mechanism and the high nonlinearities of the hydraulic system.In this study,the trajectory control of a 3-DOF symmetric spherical parallel 3UPS/S manipulator is evaluated.Focusing on the highly coupling and nonlinear system dynamics,a compound impedance control method for a hydraulic driven parallel manipulator is proposed,which combines impedance control with the spatial motion characteristics of a parallel manipulator.The control strategy is divided into the inner and outer loops.The inner loop controls the impedance of the actuator in the joint space,and the outer loop controls the impedance of the entire platform in the task space to compensate the coupling of the actuators and improve the tracking accuracy of the moving platform.Compound impedance control does not require force or pressure sensors and is less dependent on modeling precision.The experimental results show that the compound impedance control effectively improves the tracking accuracy of the moving platform.This research proposes a compound impedance control strategy for a 3-DOF hydraulic parallel manipulator,which has high tracking precision with a simple and cheap system configuration.展开更多
Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as me...Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger’s kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.展开更多
A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level contro...A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.展开更多
In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strate...In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strategy to design controls for dynamic testing is by designing the test system impedance. It is also shown that this can be achieved using feedforward compensation. The analysis is carried out in the context of displacement controlled dynamic testing, when the tested structure has a high and nonlinear stiffness. It is demonstrated that stable and accurate dynamic testing can be achieved using the proposed strategy, when this is not possible using traditional feedback control techniques. Furthermore, the impedance control and feedforward strategies are applied in the context of hybrid simulation, a technique of coupling computational and physical substructures applied in earthquake engineering. Here, a delay compensation scheme is necessary in addition to feedforward. Experimental results are presented that demonstrate both improved dynamic testing performance when impedance control is employed, and its applicability in hybrid simulation.展开更多
This paper studies the passive impedance control of a robot manipulator with model uncertainty to perform manipulation tasks while interacting with dynamic environment. Impedance control is a powerful approach for the...This paper studies the passive impedance control of a robot manipulator with model uncertainty to perform manipulation tasks while interacting with dynamic environment. Impedance control is a powerful approach for the robot to perform mechanical tasks while interacting with dynamic environment. However, in our previous research, it was clarified that, the time varying impedance center as well as the robot's model uncertainty influences the robot's passivity, which may lead to serious safety problem for both the robot as well as its environment. In order for the robot to keep its passivity as well as to realize desired objective impedance, in this paper, a novel observer based control design is proposed. Computer simulations of a 2-1ink manipulator interacting with a dynamic wall show the effectiveness of our control approach.展开更多
Passivity is an important requirement for a robot to interact with human or other dynamic environments stably and safely as in robotic rehabilitations. Considering the time-varying objective impedance center, under th...Passivity is an important requirement for a robot to interact with human or other dynamic environments stably and safely as in robotic rehabilitations. Considering the time-varying objective impedance center, under the condition that the robot's dynamics is known, previous research has already proposed a passive impedance control approach which adjusts a scaling parameter of the robot's desired velocity with respect to the robot's mechanic energy so as to maintain the robot's passivity. In this research, we furture take into account of the robot's dynamical model uncertainties and propose a robust passive impedance control. Computer simulations of a 2-link manipulator interacting with a dynamic wall show the effectiveness of our robust control approach.展开更多
For robot interaction control,the interaction force between the robot and the manipulated object or environment should be monitored.Impedance control is a type of interaction control.Specifically,in impedance control,...For robot interaction control,the interaction force between the robot and the manipulated object or environment should be monitored.Impedance control is a type of interaction control.Specifically,in impedance control,the dynamic relationship between the interaction force and the resulting motion is controlled.In order to control the impedance of a mechanical system,typically,the interaction force has to be sensed.Due to the inherent limitations of direct force sensing at the interaction site,in the present work,the interaction force is observed using robust observers.In particular,to enhance the accuracy of impedance control,a first order sliding mode impedance controller is designed and incorporated in the present paper.Its advantage over positionbased interaction control algorithms is demonstrated through experimentation.Experimental results are given to show the effectiveness of the proposed algorithms.展开更多
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How...Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.展开更多
In this article, an unknown system dynamics estimator-based impedance control method is proposed for the lower limb exoskeleton to stimulate the tracking flexibility with the terminal target position when suffering pa...In this article, an unknown system dynamics estimator-based impedance control method is proposed for the lower limb exoskeleton to stimulate the tracking flexibility with the terminal target position when suffering parametric inaccuracies and unexpected disturbances. To reinforce the robust performance, via constructing the filtering operation-based dynamic relation, i.e., invariant manifold, the unknown system dynamics estimators are employed to maintain the accurate perturbation identification in both the hip and knee subsystem. Besides, a funnel control technique is designed to govern the convergence process within a minor overshoot and a higher steady-state precision. Meanwhile, an interactive complaint result can be obtained with the aid of the impedance control, where the prescribed terminal trajectory can be adjusted into the interaction variable-based target position by the force–position mapping, revealing the dynamic influence between the impedance coefficient (stiffness and damping) and the adjusted position magnitude. A sufficient stability analysis verifies the ultimately uniformly bounded results of all the error signals, and even the angle errors can be regulated within the predefined funnel boundary in the whole convergence. Finally, some simulations are provided to demonstrate the validity and superiority including the enhanced interaction flexibility and robustness.展开更多
In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical facto...In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.展开更多
A grasping force control strategy is proposed in order to complete various free manipulations by using anthropomorphic prosthetic hand. The position-based impedance control and force-tracking impedance control are use...A grasping force control strategy is proposed in order to complete various free manipulations by using anthropomorphic prosthetic hand. The position-based impedance control and force-tracking impedance control are used in free and constraint spaces, respectively. The fuzzy observer is adopted in transition in order to switch control mode. Two control modes use one position-based impedance controller. In order to achieve grasping force track, reference force is added to the impedance controller in the constraint space. Trajectory tracking in free space and torque tracking in constrained space are realized, and reliability of mode switch and stability of system are achieved. An adaptive sliding mode friction compensation method is proposed. This method makes use of terminal sliding mode idea to design sliding mode function, which makes the tracking error converge to zero in finite time and avoids the problem of conventional sliding surface that tracking error cannot converge to zero. Based on the characteristic of the exponential form friction, the sliding mode control law including the estimation of friction parameter is obtained through terminal sliding mode idea, and the online parameter update laws are obtained based on Lyapunov stability theorem. The experiments on the HIT Prosthetic Hand IV are carried out to evaluate the grasping force control strategy, and the experiment results verify the effectiveness of this control strategy.展开更多
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ...In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.展开更多
In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design i...In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework.展开更多
Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and fur...Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.展开更多
With the development of human robot interaction technologies, haptic interfaces are widely used for 3 D applications to provide the sense of touch. These interfaces have been utilized in medical simulation, virtual as...With the development of human robot interaction technologies, haptic interfaces are widely used for 3 D applications to provide the sense of touch. These interfaces have been utilized in medical simulation, virtual assembly and remote manipulation tasks. However, haptic interface design and control are still critical problems to reproduce the highly sensitive touch sense of humans. This paper presents the development and evaluation of a7-DOF(degree of freedom) haptic interface based on the modified delta mechanism. Firstly, both kinematics and dynamics of the modified mechanism are analyzed and presented. A novel gravity compensation algorithm based on the physical model is proposed and validated in simulation. A haptic controller is proposed based on the forward kinematics and the gravity compensation algorithm. To evaluate the control performance of the haptic interface, a prototype has been implemented. Three kinds of experiments: gravity compensation, static response and force tracking are performed respectively. The experimental results show that the mean error of the gravity compensation is less than 0.7 N and the maximum continuous force along the axis can be up to 6 N. This demonstrates the good performance of the proposed haptic interface.展开更多
基金supported in part by the National Natural Science Foundation of China(62293514,52275020,and 91948301)。
文摘Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks.
基金The National Natural Science Foundation of China(No.60675045)the National High Technology Research and Development Program of China (863Program) (No.2006AA04Z255)
文摘In order to investigate the joint torque-based Cartesian impedance control strategies and the influence of compensations for friction, an experimental study on the identification of friction parameters, friction compensation and the Cartesian impedance control are developed for the harmonic drive robot, by using the sensors available in the joint itself. Different from the conventional Cartesian impedance control schemes which are mostly based on the robot end force/torque information, five joint torque-based Cartesian impedance control schemes are considered, including the force-based schemes in Cartesian/joint space, the position-based schemes in Cartesian/joint space and the stiffness control. Four of them are verified by corresponding experiments with/without friction compensations. By comparison, it is found that the force-based impedance control strategy is more suitable than the position-based one for the robot based on joint torque feedback and the friction has even a positive effect on Cartesian impedance control stability.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
基金supported by the National Natural Science Foundation of China (61673009)。
文摘Robotic systems are expected to play an increasingly important role in future space activities. The robotic on-orbital service, whose key is the capturing technology, becomes a research hot spot in recent years. This paper studies the dynamics modeling and impedance control of a multi-arm free-flying space robotic system capturing a non-cooperative target. Firstly, a control-oriented dynamics model is essential in control algorithm design and code realization. Unlike a numerical algorithm, an analytical approach is suggested. Using a general and a quasi-coordinate Lagrangian formulation, the kinematics and dynamics equations are derived.Then, an impedance control algorithm is developed which allows coordinated control of the multiple manipulators to capture a target.Through enforcing a reference impedance, end-effectors behave like a mass-damper-spring system fixed in inertial space in reaction to any contact force between the capture hands and the target. Meanwhile, the position and the attitude of the base are maintained stably by using gas jet thrusters to work against the manipulators' reaction. Finally, a simulation by using a space robot with two manipulators and a free-floating non-cooperative target is illustrated to verify the effectiveness of the proposed method.
基金National Natural Science Foundation of China(Grant No.51875499).
文摘The hydraulic parallel manipulator combines the high-power density of the hydraulic system and high rigidity of the parallel mechanism with excellent load-carrying capacity.However,the high-precision trajectory tracking control of the hydraulic parallel manipulator is challenged by the coupling dynamics of the parallel mechanism and the high nonlinearities of the hydraulic system.In this study,the trajectory control of a 3-DOF symmetric spherical parallel 3UPS/S manipulator is evaluated.Focusing on the highly coupling and nonlinear system dynamics,a compound impedance control method for a hydraulic driven parallel manipulator is proposed,which combines impedance control with the spatial motion characteristics of a parallel manipulator.The control strategy is divided into the inner and outer loops.The inner loop controls the impedance of the actuator in the joint space,and the outer loop controls the impedance of the entire platform in the task space to compensate the coupling of the actuators and improve the tracking accuracy of the moving platform.Compound impedance control does not require force or pressure sensors and is less dependent on modeling precision.The experimental results show that the compound impedance control effectively improves the tracking accuracy of the moving platform.This research proposes a compound impedance control strategy for a 3-DOF hydraulic parallel manipulator,which has high tracking precision with a simple and cheap system configuration.
文摘Presents a novel compliant motion control for a robot hand using the Cartesian impedance approach based on fingertip force measurements. The fingertip can accurately track desired motion in free space and appear as mechanical impedance in constrained space. In the position based impedance control strategy, any switching mode in contact transition phase is not needed. The impedance parameters can be adjusted in a certain range according to various tasks. In this paper, the analysis of the finger’s kinematics and dynamics is given. Experimental results have shown the effectiveness of this control strategy.
文摘A novel control system is developed to improve the capabilities of robet hand performing tasks in a variety of environments. A joint impedance control strategy has been successfully implemented in the low level control of a highly integrated robot hand. At flint, a real time controller with DSP&FPGA-based multilevel control architecture is built. Then a current sensor of the single direct current (DC) link is used to measure and reconstruct the three phase currents, and a stable current signal is measured by optimizing sample instant. The experimental results of the joint impedance control show that the proposed method not only improves the effectiveness of contact environment performance, but also provides compliant interaction of robot hand with a person, which is very important for the development of friendly human robot of the next generation.
基金Dept.of Civil,Structural and Architectural Engineering and the College of Engineering and Applied Sciences of the University of Colorado at Boulder,USA
文摘In this paper, the issue of actuator-structure interaction in dynamic testing of structures is considered. The problem is approached from the novel standpoint of impedance control. It is shown that an effective strategy to design controls for dynamic testing is by designing the test system impedance. It is also shown that this can be achieved using feedforward compensation. The analysis is carried out in the context of displacement controlled dynamic testing, when the tested structure has a high and nonlinear stiffness. It is demonstrated that stable and accurate dynamic testing can be achieved using the proposed strategy, when this is not possible using traditional feedback control techniques. Furthermore, the impedance control and feedforward strategies are applied in the context of hybrid simulation, a technique of coupling computational and physical substructures applied in earthquake engineering. Here, a delay compensation scheme is necessary in addition to feedforward. Experimental results are presented that demonstrate both improved dynamic testing performance when impedance control is employed, and its applicability in hybrid simulation.
文摘This paper studies the passive impedance control of a robot manipulator with model uncertainty to perform manipulation tasks while interacting with dynamic environment. Impedance control is a powerful approach for the robot to perform mechanical tasks while interacting with dynamic environment. However, in our previous research, it was clarified that, the time varying impedance center as well as the robot's model uncertainty influences the robot's passivity, which may lead to serious safety problem for both the robot as well as its environment. In order for the robot to keep its passivity as well as to realize desired objective impedance, in this paper, a novel observer based control design is proposed. Computer simulations of a 2-1ink manipulator interacting with a dynamic wall show the effectiveness of our control approach.
文摘Passivity is an important requirement for a robot to interact with human or other dynamic environments stably and safely as in robotic rehabilitations. Considering the time-varying objective impedance center, under the condition that the robot's dynamics is known, previous research has already proposed a passive impedance control approach which adjusts a scaling parameter of the robot's desired velocity with respect to the robot's mechanic energy so as to maintain the robot's passivity. In this research, we furture take into account of the robot's dynamical model uncertainties and propose a robust passive impedance control. Computer simulations of a 2-link manipulator interacting with a dynamic wall show the effectiveness of our robust control approach.
文摘For robot interaction control,the interaction force between the robot and the manipulated object or environment should be monitored.Impedance control is a type of interaction control.Specifically,in impedance control,the dynamic relationship between the interaction force and the resulting motion is controlled.In order to control the impedance of a mechanical system,typically,the interaction force has to be sensed.Due to the inherent limitations of direct force sensing at the interaction site,in the present work,the interaction force is observed using robust observers.In particular,to enhance the accuracy of impedance control,a first order sliding mode impedance controller is designed and incorporated in the present paper.Its advantage over positionbased interaction control algorithms is demonstrated through experimentation.Experimental results are given to show the effectiveness of the proposed algorithms.
基金Supported by National Natural Science Foundation of China(Grant No.61773060).
文摘Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.
基金supported in part by the Young Talent Fund of Association for Science and Technology in Shaanxi,China(No.20230126).
文摘In this article, an unknown system dynamics estimator-based impedance control method is proposed for the lower limb exoskeleton to stimulate the tracking flexibility with the terminal target position when suffering parametric inaccuracies and unexpected disturbances. To reinforce the robust performance, via constructing the filtering operation-based dynamic relation, i.e., invariant manifold, the unknown system dynamics estimators are employed to maintain the accurate perturbation identification in both the hip and knee subsystem. Besides, a funnel control technique is designed to govern the convergence process within a minor overshoot and a higher steady-state precision. Meanwhile, an interactive complaint result can be obtained with the aid of the impedance control, where the prescribed terminal trajectory can be adjusted into the interaction variable-based target position by the force–position mapping, revealing the dynamic influence between the impedance coefficient (stiffness and damping) and the adjusted position magnitude. A sufficient stability analysis verifies the ultimately uniformly bounded results of all the error signals, and even the angle errors can be regulated within the predefined funnel boundary in the whole convergence. Finally, some simulations are provided to demonstrate the validity and superiority including the enhanced interaction flexibility and robustness.
基金supported by National Natural Science Foundation of China(No.52277102)。
文摘In recent years, high-frequency resonance (HFR) events occurred in several modular multilevel converter based high-voltage direct current (MMC-HVDC) projects. The time delay of an MMC-HVDC system is the critical factor that induces HFR. The frequency coupling affects the impedance characteristics of an MMC and further deteriorates system stability. Therefore, in this paper, a multi-input multi-output admittance model of an MMC-HVDC system is developed to analyze its frequency characteristics. The effects of current loop, power loop, phase-locked loop, and operating point on the MMC frequency coupling degree are analyzed in detail. Meanwhile, to further suppress HFR in the MMC-HVDC system, an enhanced impedance reshaping control strategy based on the equivalent single-input single-output impedance model is proposed. Finally, the accuracy of the enhanced impedance model and the effectiveness of the impedance reshaping control are verified by electromagnetic transient simulations in PSCAD.
基金Project(2009AA043803) supported by the National High Technology Research and Development Program of China Project (SKLRS200901B) supported by Self-Planned Task of State Key Laboratory of Robotics and System (Harbin Institute of Technology),ChinaProject (NCET-09-0056) supported by Program for New Century Excellent Talents in Universities of China
文摘A grasping force control strategy is proposed in order to complete various free manipulations by using anthropomorphic prosthetic hand. The position-based impedance control and force-tracking impedance control are used in free and constraint spaces, respectively. The fuzzy observer is adopted in transition in order to switch control mode. Two control modes use one position-based impedance controller. In order to achieve grasping force track, reference force is added to the impedance controller in the constraint space. Trajectory tracking in free space and torque tracking in constrained space are realized, and reliability of mode switch and stability of system are achieved. An adaptive sliding mode friction compensation method is proposed. This method makes use of terminal sliding mode idea to design sliding mode function, which makes the tracking error converge to zero in finite time and avoids the problem of conventional sliding surface that tracking error cannot converge to zero. Based on the characteristic of the exponential form friction, the sliding mode control law including the estimation of friction parameter is obtained through terminal sliding mode idea, and the online parameter update laws are obtained based on Lyapunov stability theorem. The experiments on the HIT Prosthetic Hand IV are carried out to evaluate the grasping force control strategy, and the experiment results verify the effectiveness of this control strategy.
基金Projects(51975376,51505289)supported by the National Natural Science Foundation of ChinaProject(19ZR1435400)supported by the Natural Science Foundation of Shanghai,China。
文摘In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.
基金This work was supported in part by the National Natural Science Foundation of China(61903028)the Youth Innovation Promotion Association,Chinese Academy of Sciences(2020137)+1 种基金the Lifelong Learning Machines Program from DARPA/Microsystems Technology Officethe Army Research Laboratory(W911NF-18-2-0260).
文摘In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework.
基金supported by the National Natural Science Foundation of China(61403215)the National Natural Science Foundation of Tianjin(13JCYBJC36600)the Fundamental Research Funds for the Central Universities
文摘Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.
基金supported by the National Natural Science Foundation(NNSF)of China(61533016,U1613210)the National High-tech Research and Development Program(863 Program)of China(2015AA042306)the Beijing Natural Science Foundation(4161001)
文摘With the development of human robot interaction technologies, haptic interfaces are widely used for 3 D applications to provide the sense of touch. These interfaces have been utilized in medical simulation, virtual assembly and remote manipulation tasks. However, haptic interface design and control are still critical problems to reproduce the highly sensitive touch sense of humans. This paper presents the development and evaluation of a7-DOF(degree of freedom) haptic interface based on the modified delta mechanism. Firstly, both kinematics and dynamics of the modified mechanism are analyzed and presented. A novel gravity compensation algorithm based on the physical model is proposed and validated in simulation. A haptic controller is proposed based on the forward kinematics and the gravity compensation algorithm. To evaluate the control performance of the haptic interface, a prototype has been implemented. Three kinds of experiments: gravity compensation, static response and force tracking are performed respectively. The experimental results show that the mean error of the gravity compensation is less than 0.7 N and the maximum continuous force along the axis can be up to 6 N. This demonstrates the good performance of the proposed haptic interface.