The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to...The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no finger- print of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs.展开更多
The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)o...The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)of Jiangsu Province in China is estimated.The results show that the rough irregular terrain results in the rapid magnitude attenuation and the increase of the rise-time of the field waveform.For example,for the Yangzhou DF site as the circumference of a radius of 45 km,the root-mean-squared height(RMSH)of the real irregular terrain varies from 7 to 33 m;the extra field attenuation relative to the ideal ground surface ranges from 1%to 11%,and the extra rise-time increment varies from 0.1 to 0.6μs.Therefore,the extracted current peak of lightning return stroke may be underestimated from the remotely measured electromagnetic field,and the error varies along with different azimuths.展开更多
Controlling the distribution of solar spectrum in different bands would boost the energy harvesting efficiency and optimize the energy dispatchability.1D photonic crystal with intrinsic optical band gap can be used to...Controlling the distribution of solar spectrum in different bands would boost the energy harvesting efficiency and optimize the energy dispatchability.1D photonic crystal with intrinsic optical band gap can be used to split the solar spectrum for hybrid photovoltaic/thermal solar applications.Here,we designed an efficient solar spectrum optical filter based on a cermet layer,Si/SiO_(2)1D photonic crystal,and top heterostructure layer.Compared with 1D photonic crystal structure,the 1D photonic crystal heterostructure with top YSZ layer can realize the reflectance of greater than 92%in PV band and the low average reflectance in two thermal bands by tuning the effective impedance of multilayer films.The enhanced reflectance in PV band results from the huge mismatching of impedance between free space and the heterostructure structure.The top dielectric layer can also be extended to other oxides.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB921504 and 2011CB707902)the National Natural Science Foundation of China(Grant No.11474160)+3 种基金the Fundamental Research Funds for Central Universities,China(Grant No.020414380001)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLOA201401)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘The acoustic wave propagation from a two-dimensional subwavelength slit surrounded by metal plates decorated with Helmholtz resonators (HRs) is investigated both numerically and experimentally in this work. Owing to the presence of HRs, the effective impedance of metal surface boundary can be manipulated. By optimizing the distribution of HRs, the asymmetric effective impedance boundary will be obtained, which contributes to generating tunable acoustic radiation pattern such as directional acoustic beaming. These dipole-like radiation patterns have high radiation efficiency, no finger- print of sidelobes, and a wide tunable range of the radiation pattern directivity angle which can be steered by the spatial displacements of HRs.
基金Supported by the Application of the Forecasting Warning System for Lightning Disaster in Yunan Plateau(YNKJXM20190733)National Natural Science Foundation of China(41775006,41575004).
文摘The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)of Jiangsu Province in China is estimated.The results show that the rough irregular terrain results in the rapid magnitude attenuation and the increase of the rise-time of the field waveform.For example,for the Yangzhou DF site as the circumference of a radius of 45 km,the root-mean-squared height(RMSH)of the real irregular terrain varies from 7 to 33 m;the extra field attenuation relative to the ideal ground surface ranges from 1%to 11%,and the extra rise-time increment varies from 0.1 to 0.6μs.Therefore,the extracted current peak of lightning return stroke may be underestimated from the remotely measured electromagnetic field,and the error varies along with different azimuths.
基金the National Natural Science Foundation of China(51871081,11674078 and 51971081)the Natural Science Foundation of Guangdong Province of China(2018A0303130033)+1 种基金Shenzhen Fundamental Research Project(JCYJ20170811155832192)Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(HIT.NSRIF.2020060).
文摘Controlling the distribution of solar spectrum in different bands would boost the energy harvesting efficiency and optimize the energy dispatchability.1D photonic crystal with intrinsic optical band gap can be used to split the solar spectrum for hybrid photovoltaic/thermal solar applications.Here,we designed an efficient solar spectrum optical filter based on a cermet layer,Si/SiO_(2)1D photonic crystal,and top heterostructure layer.Compared with 1D photonic crystal structure,the 1D photonic crystal heterostructure with top YSZ layer can realize the reflectance of greater than 92%in PV band and the low average reflectance in two thermal bands by tuning the effective impedance of multilayer films.The enhanced reflectance in PV band results from the huge mismatching of impedance between free space and the heterostructure structure.The top dielectric layer can also be extended to other oxides.