An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f...An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.展开更多
Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain M...Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.展开更多
In order to address the current aircraft noise problem, the knowledge of impedance of acoustic liners subjected to high-intensity sound and grazing flow is of crucial importance to the design of high-efficiency acoust...In order to address the current aircraft noise problem, the knowledge of impedance of acoustic liners subjected to high-intensity sound and grazing flow is of crucial importance to the design of high-efficiency acoustic nacelles. To this end, the present study is twofold. Firstly, the StraightForward impedance eduction Method(SFM) is evaluated by the strategy that the impedance of a liner specimen is firstly experimentally educed on a flow duct using the SFM, and then its accuracy is checked by comparing the numerical prediction with the measured wall sound pressure of the flow duct. Secondly, the effects of grazing flow and high-intensity sound on the impedance behavior of two single-layer liners are investigated based on comparisons between educed impedance and predictions by three impedance models. The performance of the SFM is validated by showing that the educed impedance leads to excellent agreement between the simulation and the measured wall sound pressure for different grazing flow Mach numbers and Sound Pressure Levels(SPLs) and over a frequency range from 3000 Hz down to 500 Hz. The grazing flow effect generally has the tendency that the acoustic resistance exhibits a slight decrease before it increases linearly with an increase in Mach,predicted successfully by the sound-vortex interaction theoretical model and the Kooi semi-empirical impedance model. However, the Goodrich semi-empirical impedance model gives only a simple linear relation of acoustic resistance starting from Mach zero. Additionally, when the SPL increases from 110 to 140 d B in the present investigation, the acoustic resistance exhibits a significant increase at all frequencies in the absence of flow; however, the resistance decreases slightly under a grazing flow of Mach 0.117. It indicates that the SPL effect can be greatly inhibited when flow is present,and the grazing flow effect can be reduced partly as well at a relatively high SPL.展开更多
Ce1-xBixO2-δ (x = 0.00, 0.03, 0.05, 0.07, 0.10, 0.15, 0.30) solid solutions were synthesized via a hydrothermal method. The structure, spectra and electrochemical transport properties of the samples were characteri...Ce1-xBixO2-δ (x = 0.00, 0.03, 0.05, 0.07, 0.10, 0.15, 0.30) solid solutions were synthesized via a hydrothermal method. The structure, spectra and electrochemical transport properties of the samples were characterized systematically. The powder X-ray diffraction analysis showed that all of the doped samples exhibited single phase fluorite structure. The particle sizes decreased from 18 to 9 nm and the lattice parameters increased gradually with the dopant content increasing from x = 0.03 to x = 0.30. The Bi^3+ doping also induced the F2g Raman peak to shift from 463 to 455 cm^-1, and caused a red shift of the band gap energies calculated from UV-Vis spectra. The impedance plots at different temperature demonstrated that the boundary resistance was much larger than the grain resistance, and two activation energy values were obtained in different temperature range.展开更多
The modeling of the rotor support system of a typical centrifuge is discussed. The impedance matching method, cooperating with Riccati transfer matrix method and modal analysis method are adopted to calculate its dyn...The modeling of the rotor support system of a typical centrifuge is discussed. The impedance matching method, cooperating with Riccati transfer matrix method and modal analysis method are adopted to calculate its dynamic characteristics. The influences of the main parts to the critical speeds are analyzed. Based on the analysis, a critical speed in the operating speed range is tuned successfully, and thus the dynamic characteristics of the centrifuge are much improved.展开更多
Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examin...Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.展开更多
Employing the AC/DC impedance analysis method,extensive research has been conducted on issues pertaining to harmonic resonance observed in wind farm-connected MMCHVDC systems over the past 5 years.In general,this meth...Employing the AC/DC impedance analysis method,extensive research has been conducted on issues pertaining to harmonic resonance observed in wind farm-connected MMCHVDC systems over the past 5 years.In general,this method divides the studied system into two subsystems at AC and DC sections.Subsequently,the impedance produced by these subsystems can be used to determine the system stability by implementing Nyquist criterion or generalized Nyquist stability criterion.However,the existing impedance analysis methods usually assume the subsystems to be stable and disregard certain special cases with potentially unstable subsystems,where the unstable poles of these subsystems must be evaluated before applying Nyquist criterion.In view of this consideration,a simplified method for identifying unstable subsystem poles is presented in this paper.Hence,the shortcoming of existing impedance analyses is rectified by considering the unstable subsystem poles.The proposed method and the stability analyses are validated by the electromagnetic transient simulation performed in PSCAD/EMTDC.展开更多
A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field. The 3-D impedance method has been deduced from Maxwell equa...A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field. The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues. As the result, two representative cases are investigated. One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 laT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia. The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m^2 and 0.07 mA/m^2.展开更多
Power electronic converters under weak grid conditions may trigger new dynamic stability problems.Even though massive internal and external damping methods have been investigated,their system costs and robustness have...Power electronic converters under weak grid conditions may trigger new dynamic stability problems.Even though massive internal and external damping methods have been investigated,their system costs and robustness have not been solved in an effective way.This paper first proposes a sensorless active damping method based on the grid current feedback filter.The mid-frequency non-passive region of converters can be reduced effectively,thus system stability improvement in weak grids can be realized.Then this paper analyzes the feedback filter which may bring about additional non-passive regions in high frequency.What’s more,it has a poor robustness.The residual mid-frequency non-passive region can be enlarged under converter parameter variations.Furthermore,this paper proposes a hybrid active damping method.The grid voltage is fed forward through a low pass filter.The robustness against parameter variation is greatly improved and the non-passive region in high frequency is also totally eliminated.In order to further improve the system robustness in high frequency,a simple passive damping is also added.The damping resistor is designed small to reduce the damping loss.The simulation and experimental results prove that the proposed sensorless method can realize robust damping in an economic way.展开更多
The microwave absorbents of Fe and C nanoparticles as magnetic loss and dielectric loss material respectively were composited with the polyvinyl alcohol (PVA) as binder by spray granulation method, The electromagnet...The microwave absorbents of Fe and C nanoparticles as magnetic loss and dielectric loss material respectively were composited with the polyvinyl alcohol (PVA) as binder by spray granulation method, The electromagnetic parameters of Fe and C composite particles were analyzed by vector network. The complex permittivity and magnetic permeability of Fe and C composite particles matched well with increasing C nanoparticle content, and then the microwave loss property was improved. A minimum reflection loss (RL) of -42.7 dB at 3.68 GHz for a composite with 4.6 mm in thickness can be obtained when the content ratio of the C nanoparticles, the modified Fe nanoparticles and the PVA is 21:49:30 (Sample 3).展开更多
Background Despite outstanding antiplatelet properties of aspirin and clopidogrel, some patients taking these drugs continue to suffer complications. Antiplatelet resistance appears to be a new prognostic factor in ac...Background Despite outstanding antiplatelet properties of aspirin and clopidogrel, some patients taking these drugs continue to suffer complications. Antiplatelet resistance appears to be a new prognostic factor in acute coronary syndrome patients for clinical events associated with stent thrombosis (ST). However, there is no optimal method to identify it and assess its correlation to clinical outcomes. This study sought to evaluate the predictive value of antiplatelet resistance assessed by whole blood impedance aggregometry for the risk of early ST in patients with acute coronary syndrome who underwent coronary stenting. Methods Platelet responses to aspirin and clopidogrel in 86 patients with acute coronary syndrome were measured by whole blood impedance aggregometry. Spontaneous platelet aggregation was defined as antiplatelet resistance identified by the increased electrical impedance. The clinical endpoint was early stent thrombosis during 30-day follow-up after coronary stenting. Results The prevalence of aspirin resistance, clopidogrel resistance and dual resistance of combined clopidogrel and aspirin resistance were 19.8%, 12.8% and 5.8% respectively. Diabetes, female and higher platelet counts were more frequently detected in clopidogrel-resistant and dual-resistant patients. During 30-day follow-up, the patients with clopidogrel resistance and dual resistance had higher incidence of early stent thrombosis (18.2% vs. 1.3%, 40.0% vs. 1.2%, P 〈0.05). Binary Logistic Regression analysis indicated that dual resistance remained an independent predicator for early stent thrombosis (odds ratio 34.064, 95% CI 1.919-604.656, P=-0.016). Conclusions Antiplatelet resistance assessed by whole blood impedance aggregometry is paralleled to clinical events, and dual antiplatelet resistance is an independent predicator for early stent thrombosis in patients with acute coronary syndrome. As a physiological assessment of platelet reactivity, whole blood impedance aggregometry is a convenient and accurate option for measurin.q antiplatelet resistance and hence predicting early stent thrombosis.展开更多
文摘An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.
基金the sponsorship of the National Basic Research Program of China (973 Program,2013CB228604,2014CB239201)the National Oil and Gas Major Projects of China (2011ZX05014-001-010HZ,2011ZX05014-001-006-XY570) for their funding of this research
文摘Elastic impedance inversion with high efficiency and high stability has become one of the main directions of seismic pre-stack inversion. The nonlinear elastic impedance inversion method based on a fast Markov chain Monte Carlo (MCMC) method is proposed in this paper, combining conventional MCMC method based on global optimization with a preconditioned conjugate gradient (PCG) algorithm based on local optimization, so this method does not depend strongly on the initial model. It converges to the global optimum quickly and efficiently on the condition that effi- ciency and stability of inversion are both taken into consid- eration at the same time. The test data verify the feasibility and robustness of the method, and based on this method, we extract the effective pore-fluid bulk modulus, which is applied to reservoir fluid identification and detection, and consequently, a better result has been achieved.
基金co-supported by the National Natural Science Foundation of China (No. 51576009)the Projects of International Cooperation and Exchanges National Natural Science Foundation of China (Nos.11661141020 and 51711530036)
文摘In order to address the current aircraft noise problem, the knowledge of impedance of acoustic liners subjected to high-intensity sound and grazing flow is of crucial importance to the design of high-efficiency acoustic nacelles. To this end, the present study is twofold. Firstly, the StraightForward impedance eduction Method(SFM) is evaluated by the strategy that the impedance of a liner specimen is firstly experimentally educed on a flow duct using the SFM, and then its accuracy is checked by comparing the numerical prediction with the measured wall sound pressure of the flow duct. Secondly, the effects of grazing flow and high-intensity sound on the impedance behavior of two single-layer liners are investigated based on comparisons between educed impedance and predictions by three impedance models. The performance of the SFM is validated by showing that the educed impedance leads to excellent agreement between the simulation and the measured wall sound pressure for different grazing flow Mach numbers and Sound Pressure Levels(SPLs) and over a frequency range from 3000 Hz down to 500 Hz. The grazing flow effect generally has the tendency that the acoustic resistance exhibits a slight decrease before it increases linearly with an increase in Mach,predicted successfully by the sound-vortex interaction theoretical model and the Kooi semi-empirical impedance model. However, the Goodrich semi-empirical impedance model gives only a simple linear relation of acoustic resistance starting from Mach zero. Additionally, when the SPL increases from 110 to 140 d B in the present investigation, the acoustic resistance exhibits a significant increase at all frequencies in the absence of flow; however, the resistance decreases slightly under a grazing flow of Mach 0.117. It indicates that the SPL effect can be greatly inhibited when flow is present,and the grazing flow effect can be reduced partly as well at a relatively high SPL.
基金financially supported by the National Natural Science Foundations of China(No.51371094,51161015)the Inner Mongolia Natural Science Foundation(No.2013MS0806)
文摘Ce1-xBixO2-δ (x = 0.00, 0.03, 0.05, 0.07, 0.10, 0.15, 0.30) solid solutions were synthesized via a hydrothermal method. The structure, spectra and electrochemical transport properties of the samples were characterized systematically. The powder X-ray diffraction analysis showed that all of the doped samples exhibited single phase fluorite structure. The particle sizes decreased from 18 to 9 nm and the lattice parameters increased gradually with the dopant content increasing from x = 0.03 to x = 0.30. The Bi^3+ doping also induced the F2g Raman peak to shift from 463 to 455 cm^-1, and caused a red shift of the band gap energies calculated from UV-Vis spectra. The impedance plots at different temperature demonstrated that the boundary resistance was much larger than the grain resistance, and two activation energy values were obtained in different temperature range.
文摘The modeling of the rotor support system of a typical centrifuge is discussed. The impedance matching method, cooperating with Riccati transfer matrix method and modal analysis method are adopted to calculate its dynamic characteristics. The influences of the main parts to the critical speeds are analyzed. Based on the analysis, a critical speed in the operating speed range is tuned successfully, and thus the dynamic characteristics of the centrifuge are much improved.
基金supported by the National Natural Science Foundation of China(11004214,10574137)
文摘Prom investigation of the advantages and disadvantages of conventional tri-voltage method,a method for the measurement of the transmitting transducer's impedance was presented to solve the difficult problem of examining the consistency of the transmitting phased array on the single-mode excitation sea spot.In the method based on the system function, the circuit structure of tri-voltage method was used but new parameters were measured.The principle of the method was given first.Then when resistors with different nominal values were used in the circuit,the measured results for the impedance of transducers were reported.The results were compared with the higher precision impedance analyzer.Finally,the error analysis was performed according to the impedance formula and the equivalent circuit parameters were fitted.Under the condition of guaranteeing the sampling precision,by performance analyzing, the resistor value in series was chosen relatively smaller than the impedance of transducer,the measurement of impedance could achieve the same precision as the higher precision impedance analyzer.Finally,the least squares curve-fitting of measured curves indicated that the transducer equivalent electrical parameters could be extracted accurately and used to design the matching network.
文摘Employing the AC/DC impedance analysis method,extensive research has been conducted on issues pertaining to harmonic resonance observed in wind farm-connected MMCHVDC systems over the past 5 years.In general,this method divides the studied system into two subsystems at AC and DC sections.Subsequently,the impedance produced by these subsystems can be used to determine the system stability by implementing Nyquist criterion or generalized Nyquist stability criterion.However,the existing impedance analysis methods usually assume the subsystems to be stable and disregard certain special cases with potentially unstable subsystems,where the unstable poles of these subsystems must be evaluated before applying Nyquist criterion.In view of this consideration,a simplified method for identifying unstable subsystem poles is presented in this paper.Hence,the shortcoming of existing impedance analyses is rectified by considering the unstable subsystem poles.The proposed method and the stability analyses are validated by the electromagnetic transient simulation performed in PSCAD/EMTDC.
基金This work is supported by the National Natural Science Foundation of China (60671055, 60331010);Innovation Foundation from Beijing University of Posts and Telecommunications.
文摘A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field. The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues. As the result, two representative cases are investigated. One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 laT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia. The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m^2 and 0.07 mA/m^2.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51720105008 and Grant 51807033.
文摘Power electronic converters under weak grid conditions may trigger new dynamic stability problems.Even though massive internal and external damping methods have been investigated,their system costs and robustness have not been solved in an effective way.This paper first proposes a sensorless active damping method based on the grid current feedback filter.The mid-frequency non-passive region of converters can be reduced effectively,thus system stability improvement in weak grids can be realized.Then this paper analyzes the feedback filter which may bring about additional non-passive regions in high frequency.What’s more,it has a poor robustness.The residual mid-frequency non-passive region can be enlarged under converter parameter variations.Furthermore,this paper proposes a hybrid active damping method.The grid voltage is fed forward through a low pass filter.The robustness against parameter variation is greatly improved and the non-passive region in high frequency is also totally eliminated.In order to further improve the system robustness in high frequency,a simple passive damping is also added.The damping resistor is designed small to reduce the damping loss.The simulation and experimental results prove that the proposed sensorless method can realize robust damping in an economic way.
基金the support from the National Natural Science Foundation of China(No.51171033)the Fundamental Research Funds for the Central Universities(DUT15LAB05,DUT16LAB03)
文摘The microwave absorbents of Fe and C nanoparticles as magnetic loss and dielectric loss material respectively were composited with the polyvinyl alcohol (PVA) as binder by spray granulation method, The electromagnetic parameters of Fe and C composite particles were analyzed by vector network. The complex permittivity and magnetic permeability of Fe and C composite particles matched well with increasing C nanoparticle content, and then the microwave loss property was improved. A minimum reflection loss (RL) of -42.7 dB at 3.68 GHz for a composite with 4.6 mm in thickness can be obtained when the content ratio of the C nanoparticles, the modified Fe nanoparticles and the PVA is 21:49:30 (Sample 3).
文摘Background Despite outstanding antiplatelet properties of aspirin and clopidogrel, some patients taking these drugs continue to suffer complications. Antiplatelet resistance appears to be a new prognostic factor in acute coronary syndrome patients for clinical events associated with stent thrombosis (ST). However, there is no optimal method to identify it and assess its correlation to clinical outcomes. This study sought to evaluate the predictive value of antiplatelet resistance assessed by whole blood impedance aggregometry for the risk of early ST in patients with acute coronary syndrome who underwent coronary stenting. Methods Platelet responses to aspirin and clopidogrel in 86 patients with acute coronary syndrome were measured by whole blood impedance aggregometry. Spontaneous platelet aggregation was defined as antiplatelet resistance identified by the increased electrical impedance. The clinical endpoint was early stent thrombosis during 30-day follow-up after coronary stenting. Results The prevalence of aspirin resistance, clopidogrel resistance and dual resistance of combined clopidogrel and aspirin resistance were 19.8%, 12.8% and 5.8% respectively. Diabetes, female and higher platelet counts were more frequently detected in clopidogrel-resistant and dual-resistant patients. During 30-day follow-up, the patients with clopidogrel resistance and dual resistance had higher incidence of early stent thrombosis (18.2% vs. 1.3%, 40.0% vs. 1.2%, P 〈0.05). Binary Logistic Regression analysis indicated that dual resistance remained an independent predicator for early stent thrombosis (odds ratio 34.064, 95% CI 1.919-604.656, P=-0.016). Conclusions Antiplatelet resistance assessed by whole blood impedance aggregometry is paralleled to clinical events, and dual antiplatelet resistance is an independent predicator for early stent thrombosis in patients with acute coronary syndrome. As a physiological assessment of platelet reactivity, whole blood impedance aggregometry is a convenient and accurate option for measurin.q antiplatelet resistance and hence predicting early stent thrombosis.