The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unr...The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.展开更多
The photoreduction of CO_(2)into CH_(4)with simultaneous high activity and selectivity is a promising strategy to increase energy supply and alleviate global warming.However,the absence of the active sites that is res...The photoreduction of CO_(2)into CH_(4)with simultaneous high activity and selectivity is a promising strategy to increase energy supply and alleviate global warming.However,the absence of the active sites that is responsible for the adsorption and activation of CO_(2)and the generation of CO and H2via side reactions often lead to poor efficiency and low selectivity of the catalyst.Herein,Cu,Pd,and PdCu metal clusters cocatalyst-anchored defective TiO_(2)nanotubes(Cu/TiO_(2)-SBO,Pd/TiO_(2)-SBO,and Pd1Cu1/TiO_(2)-SBO)were designed via a simple solution impregnation reduction and applied for photocatalytic conversion of CO_(2)to CH_(4).The Pd1Cu1/TiO_(2)-SBO photocatalyst exhibits excellent catalytic performance among the other catalysts for photoreduction of CO_(2)into CH_(4).More interestingly,the product selectivity of CH_(4)reaches up to 100%with a rate of 25μmol g^(-1)h^(-1).In-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)simulations indicate that the main reasons for the high selectivity of CH_(4)are attributed to the PdCu alloy and oxygen vacancies,which jointly enhance the photoinduced carrier separation and lower energy barriers of key intermediates.Moreover,due to the tunable d-band center of the Cu site in the PdCu alloy,the generated intermediates can be well prevented from poisoning and promoted to participate in further reactions.Hopefully,the current study will provide insight into the development of new,highly selective photocatalysts for the visible light-catalytic reduction of CO_(2)into CH_(4).展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it cha...Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challenging to collect defective samples.Additionally,the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions.This paper proposes a novel Lightweight Multiscale Feature Fusion network(LMFF)to address these challenges.The network comprises a feature extraction network,a multi-scale feature fusion module(MFF),and a segmentation network.Specifically,a feature extraction network is proposed to obtain multi-scale feature outputs,and a multi-scale feature fusion module(MFF)is used to fuse multi-scale feature information effectively.In order to capture finer-grained multi-scale information from the fusion features,we propose a multi-scale attention module(MSA)in the segmentation network to enhance the network’s ability for small target detection.Moreover,depthwise separable convolutions are introduced to construct depthwise separable residual blocks(DSR)to reduce the model’s parameter number.Finally,to validate the proposed method’s defect segmentation and localization performance,we constructed three solar cell defect detection datasets:SolarCells,SolarCells-S,and PVEL-S.SolarCells and SolarCells-S are monocrystalline silicon datasets,and PVEL-S is a polycrystalline silicon dataset.Experimental results show that the IOU of our method on these three datasets can reach 68.5%,51.0%,and 92.7%,respectively,and the F1-Score can reach 81.3%,67.5%,and 96.2%,respectively,which surpasses other commonly usedmethods and verifies the effectiveness of our LMFF network.展开更多
This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as o...This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.展开更多
Hepatitis B virus(HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understand...Hepatitis B virus(HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.展开更多
Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen redu...Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen reduction reaction is lacking.In this study,ZnS nanoparticles on N-doped carbon serve as an oxygen reduction reaction catalyst.These catalysts were prepared via a one-step method at 900℃.Amazingly,the high-resolution transmission electron microscope image revealed obvious defects in the ZnS nanoparticles.These facilitated the catalyst synthesis,and the product displayed good electrocatalytic performance for the oxygen reduction reaction in an alkaline medium,including a lower onset potential,lower mid-wave potential,four electron transfer process,and better durability compared with 20 wt%Pt/C.More importantly,the density functional theory results indicated that using the Zn vacancies in the prepared catalyst as active sites required a lower reaction energy to produce OOH*from*OO toward oxygen reduction reaction.Therefore,the proposed catalyst with Zn vacancies can be used as a potential electrocatalyst and may be substitutes for Pt-based catalysts in fuel cells,given the novel catalyst’s resulting performance.展开更多
Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structu...Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structure is obviously a practical research subject. Hierarchical structure materials were found to be a class of promising anti-defect materials, This paper builds hierarchical lattice by adding soft adhesion to lattice's cell edges and numerical results show that its imperfection sensitivity to missing bars is minor compared with the classic lattice. Soft adhesion with appropriate properties reinforce cell edge's bending stiffness and thus reduce the bending deformation in lattice caused by missing bars defect, which is confirmed by statistical analysis of normalized node displacements of imperfect lattices under hydrostatic compression and shear loads.展开更多
The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of...The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.展开更多
In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal condu...In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp2 to hybrid sp--sp2 network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices.展开更多
High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type ...High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity.展开更多
One of the fundamental driving forces in the materials science community is the hunt for new materials with specific properties that meet the requirements of rapidly evolving technology.
The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas,such as oil and gas indus- try,power plant engineering and chemi...The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas,such as oil and gas indus- try,power plant engineering and chemical factories.An iterative algorithm is presented for the kinematic limit analysis of 3-D rigid-perfectly plastic bodies.A numerical path scheme for radial loading is adopted to deal with complex multi-loading systems.The numerical procedure has been applied to carry out the plastic collapse analysis of pipelines with part-through slot under internal pressure,bending moment and axial force.The effects of various shapes and sizes of part-through slots on the collapse loads of pipelines are systematically investigated and evaluated.Some typical failure modes corresponding to different configurations of slots and loading forms are studied.展开更多
In the viewpoint of ammonia economy,electrochemical N2 reduction reaction(NRR)under mild condition is a very promising approach for sustainable development.By virtue of robust activity and low cost,transition-metalbas...In the viewpoint of ammonia economy,electrochemical N2 reduction reaction(NRR)under mild condition is a very promising approach for sustainable development.By virtue of robust activity and low cost,transition-metalbased materials become one kind of the most attractive electrocatalysts in realizing ammonia synthesis to the industrial level.However,the investigation related to NRR electrocatalysts still mainly rely on costly substance or fabrication process,which greatly restrict their large-scale applications.In this work,a simple fabricated FeS2 electrode is adopted as NRR catalysts.The abundant surface defects due to the existence of Cr element,as well as the synergistic effect between FeS2 crystal planes provided excellent electrocatalytic performance with a high NH3 yield rate(11.5μg h^-1mg^-1 Fe)and Faradaic efficiency(14.6%)at-0.2 V vs.reversible hydrogen electrode(RHE)toward NRR under ambient conditions.The superior catalytic performance of such non-precious metal catalysts would strongly promote the application of NRR process industrially.展开更多
The exploration of highly active and durable cathodic oxygen reduction reaction(ORR)catalysts with economical production cost is still the bottleneck to realize the large‐scale commercialization of fuel cells and me...The exploration of highly active and durable cathodic oxygen reduction reaction(ORR)catalysts with economical production cost is still the bottleneck to realize the large‐scale commercialization of fuel cells and metal‐air batteries.Given that carbon support is crucial to the electrocatalysts,and Pt is the best‐known ORR catalyst so far,in this work,we employed a simple impregnation method for synthesizing a kind of defective activated carbon(D‐AC)supported low Pt content electrocatalysts for the ORR.The reduction conditions of the Pt‐containing precursor were firstly optimized,and the influence of the Pt loading amount on the ORR was investigated as well.The results show that the obtained D‐AC@5.0%Pt sample(contains5wt%Pt)has surpassed the commercial Pt/C with20wt%Pt for the ORR in an alkaline solution.In the meantime,it is more stable than the commercial Pt/C.The outstanding ORR performance of the D‐AC@5.0%Pt confirms that both the unique defects in the D‐AC and the introduced Pt particles are indispensable to the ORR.Particularly,m the ORR activity of the synthesized catalysts is superior to most of the reported counterparts,but with much easier preparation methods and lower production cost,making them more advantageous in practical fuel cell applications.展开更多
Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was...Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was synthesized through employing defective Ti0_(2) nanosheets as solid support for photo-catalytic water splitting.It indicated that the surface oxygen vacancies on defective Ti0_(2) nanosheets could effectively stabilize the single-atomic Pt sites through constructing a three-center Ti-Pt-Ti structure.The Ti-Pt-Ti structure can hold the stability of isolated single-atomic Pt sites and facilitate the separation and transfer of photoinduced charge carriers,thereby greatly improving the photocatalytic H2 evolution.Notably,our synthesized photocatalyst exhibited a remarkably enhanced H2 evolution performance,and the H2 production rate is up to 13460.7μmol h^(-1)·g^(-1),which is up to around 29.0 and 4.7 times higher than those of Ti0_(2) nanosheets and Pt nanoparticles-Ti0_(2).In addition,a plausible enhanced reaction mechanism was also proposed combining with photo-electrochemical characterizations and density functional theoiy(DFT)calculation results.Ultimately,it is believed that this work highlights the benefits of a single-site catalyst and paves the way to rationally design the highly active and stable single-atomic site photocatalysts on metal oxide support.展开更多
In this study,a series of metal-organic frameworks(MOFs)NH_(2)-UiO-66-x HAc catalysts were synthesized by solvothermal method using acetic acid(HAc)as a modulator,and were applied to the cycloaddition of CO_(2)and epi...In this study,a series of metal-organic frameworks(MOFs)NH_(2)-UiO-66-x HAc catalysts were synthesized by solvothermal method using acetic acid(HAc)as a modulator,and were applied to the cycloaddition of CO_(2)and epichlorohydrin(EPIC)under ambient pressure.Influences of the modulation by HAc on morphologies and structures of the MOFs are demonstrated via PXRD,FESEM,FTIR,N_(2)adsorption-desorption,XPS and ^(1)H NMR characterizations.The results show that the MOFs containing mesoporous pores can be prepared by adjusting the concentration of HAc.By optimizing the amount of HAc added,the specific surface area of NH_(2)-UiO-66-8 HAc is as high as 879.17 m^(2)·g^(-1),which is 28.3%higher than that of the original MOFs.And the evaluation of catalytic performance showed that HAc modulation enhanced the activity of NH_(2)-UiO-66-x HAc under mild conditions.The exposure of Lewis acid sites,increased specific surface area and porosity via the modulation of HAc defective ligand can be supposed the key factors to determine the enhanced catalytic activities.In addition,considering the influence of gas concentration on the reaction,the concept of TOP(Turnover of Pressure,defined as the mass of conversions of a unit mass catalyst under unit pressure and unit time)was first proposed in this article.展开更多
Graphene,as a proof-of-concept two-dimensional material,has proven to have excellent physical and chemical properties.Its derivatives,such as defective or doped graphene,are also applied as catalytic materials for met...Graphene,as a proof-of-concept two-dimensional material,has proven to have excellent physical and chemical properties.Its derivatives,such as defective or doped graphene,are also applied as catalytic materials for metal-air batteries(MABs).MABs have been recognized as possible candidates for new-generation energy storage systems due to their ultra-high theoretical energy density.So far,graphene and its derivatives with optimized structures have been widely explored to improve the electrochemical performance in MABs.Generally speaking,perfect graphene crystalline is inert for many catalytic processes,while defects and heteroatoms can endow graphene with high activity for many electrocatalytic reactions.Under this circumstance,recent progress is summarized for defective/doped graphene as air cathodes in aqueous or organic MABs,which are actually different electrochemical systems with distinct requirements for air cathodes.Also,the relationship is clarified between graphene defects/doping and electrocatalytic mechanisms that can be the guidance for catalyst design.Future directions are also prospected for the development of graphene-based MAB cathodes.展开更多
NH_(2)-UIO66(NU)is a promising photocatalyst for the reduction of Cr(VI)to low-toxic Cr(III)driven by visible light under ambient conditions.However,the main limitation in this process is the ineffi cient ligand to me...NH_(2)-UIO66(NU)is a promising photocatalyst for the reduction of Cr(VI)to low-toxic Cr(III)driven by visible light under ambient conditions.However,the main limitation in this process is the ineffi cient ligand to metal charge transfer(LMCT)of photo-excited electrons,which is caused by inherent energy gap(ΔE_(LMCT)).This study synthesized the defective NU(NUXH,where X is the molar equivalent of the modulator)with reducedΔE_(LMCT)through linkers removal via acid treatment.The electronic structure of NUX-H was systematically investigated,and the results indicated that the structural defects in NUX-H strongly altered the environment of the Zr atoms.Furthermore,they substantially lowered the energy of the unoccupied d orbitals(LUMO),which was benefi cial to effi cient LMCT,resulting in an improved photocatalytic activity of NUX-H toward high-concentration(100 mg/L)Cr(VI)reduction.Compared to NU with defect-free structure,the reducing rate of Cr(VI)was increased by 47 times.This work introduced an alternative strategy in terms of designing effi cient photocatalysts for reducing Cr(VI)under ambient conditions.展开更多
文摘The classical EPQ model has been used for a long ti me and is widely accepted and implemented. Nevertheless, the analysis for finding an economic lot size has based on a number of unrealistic assumptions. A common unrealistic assumption in using EPQ is that all units produced are of good quali ty. The classical EPQ model shows that the optimal lot size will generate minimum ma nufacturing cost, thus producing minimum setup cost and inventory cost. However, this is only true if all products manufactured in the process are assumed to be of good quality (i.e. all products are within the specification limits). In rea lity this is not the case, therefore, it is necessary to consider the cost of im perfect quality items, because this cost can influence the economic lot size. Ma ny studies and recent papers have indicated that there is a significant relation ship between economic production lot size and process/product quality. However, their models included either the imperfect quality items (not necessarily de fective) which are to be sold at a discounted price or defective items which can be reworked or rejected. The aim of this paper is to provide a framework to integrate three different sit uations (discounted pricing/rework/reject) into a single model. 100% inspection is performed in order to distinguish the amount of good quality items, imper fect quality items and defective items in each lot. In this paper, a mathematica l model is developed, and a numerical example is presented to illustrate the sol ution procedures. It is found that the economic production lot size tends to inc rease as the average percentage of imperfect quality items and defectives (rejec ted items) increases.
基金the financial support from the Program for Innovative Research Team in University of Henan Province(21IRTSTHN009)Science and Technology Fund of Henan Province(225200810051)Natural Science Foundation of Henan Province(222300420406)。
文摘The photoreduction of CO_(2)into CH_(4)with simultaneous high activity and selectivity is a promising strategy to increase energy supply and alleviate global warming.However,the absence of the active sites that is responsible for the adsorption and activation of CO_(2)and the generation of CO and H2via side reactions often lead to poor efficiency and low selectivity of the catalyst.Herein,Cu,Pd,and PdCu metal clusters cocatalyst-anchored defective TiO_(2)nanotubes(Cu/TiO_(2)-SBO,Pd/TiO_(2)-SBO,and Pd1Cu1/TiO_(2)-SBO)were designed via a simple solution impregnation reduction and applied for photocatalytic conversion of CO_(2)to CH_(4).The Pd1Cu1/TiO_(2)-SBO photocatalyst exhibits excellent catalytic performance among the other catalysts for photoreduction of CO_(2)into CH_(4).More interestingly,the product selectivity of CH_(4)reaches up to 100%with a rate of 25μmol g^(-1)h^(-1).In-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)and density functional theory(DFT)simulations indicate that the main reasons for the high selectivity of CH_(4)are attributed to the PdCu alloy and oxygen vacancies,which jointly enhance the photoinduced carrier separation and lower energy barriers of key intermediates.Moreover,due to the tunable d-band center of the Cu site in the PdCu alloy,the generated intermediates can be well prevented from poisoning and promoted to participate in further reactions.Hopefully,the current study will provide insight into the development of new,highly selective photocatalysts for the visible light-catalytic reduction of CO_(2)into CH_(4).
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金supported in part by the National Natural Science Foundation of China under Grants 62463002,62062021 and 62473033in part by the Guiyang Scientific Plan Project[2023]48–11,in part by QKHZYD[2023]010 Guizhou Province Science and Technology Innovation Base Construction Project“Key Laboratory Construction of Intelligent Mountain Agricultural Equipment”.
文摘Solar cell defect detection is crucial for quality inspection in photovoltaic power generation modules.In the production process,defect samples occur infrequently and exhibit random shapes and sizes,which makes it challenging to collect defective samples.Additionally,the complex surface background of polysilicon cell wafers complicates the accurate identification and localization of defective regions.This paper proposes a novel Lightweight Multiscale Feature Fusion network(LMFF)to address these challenges.The network comprises a feature extraction network,a multi-scale feature fusion module(MFF),and a segmentation network.Specifically,a feature extraction network is proposed to obtain multi-scale feature outputs,and a multi-scale feature fusion module(MFF)is used to fuse multi-scale feature information effectively.In order to capture finer-grained multi-scale information from the fusion features,we propose a multi-scale attention module(MSA)in the segmentation network to enhance the network’s ability for small target detection.Moreover,depthwise separable convolutions are introduced to construct depthwise separable residual blocks(DSR)to reduce the model’s parameter number.Finally,to validate the proposed method’s defect segmentation and localization performance,we constructed three solar cell defect detection datasets:SolarCells,SolarCells-S,and PVEL-S.SolarCells and SolarCells-S are monocrystalline silicon datasets,and PVEL-S is a polycrystalline silicon dataset.Experimental results show that the IOU of our method on these three datasets can reach 68.5%,51.0%,and 92.7%,respectively,and the F1-Score can reach 81.3%,67.5%,and 96.2%,respectively,which surpasses other commonly usedmethods and verifies the effectiveness of our LMFF network.
基金funded by Woosong University Academic Research 2024.
文摘This study investigates the application of Learnable Memory Vision Transformers(LMViT)for detecting metal surface flaws,comparing their performance with traditional CNNs,specifically ResNet18 and ResNet50,as well as other transformer-based models including Token to Token ViT,ViT withoutmemory,and Parallel ViT.Leveraging awidely-used steel surface defect dataset,the research applies data augmentation and t-distributed stochastic neighbor embedding(t-SNE)to enhance feature extraction and understanding.These techniques mitigated overfitting,stabilized training,and improved generalization capabilities.The LMViT model achieved a test accuracy of 97.22%,significantly outperforming ResNet18(88.89%)and ResNet50(88.90%),aswell as the Token to TokenViT(88.46%),ViT without memory(87.18),and Parallel ViT(91.03%).Furthermore,LMViT exhibited superior training and validation performance,attaining a validation accuracy of 98.2%compared to 91.0%for ResNet 18,96.0%for ResNet50,and 89.12%,87.51%,and 91.21%for Token to Token ViT,ViT without memory,and Parallel ViT,respectively.The findings highlight the LMViT’s ability to capture long-range dependencies in images,an areawhere CNNs struggle due to their reliance on local receptive fields and hierarchical feature extraction.The additional transformer-based models also demonstrate improved performance in capturing complex features over CNNs,with LMViT excelling particularly at detecting subtle and complex defects,which is critical for maintaining product quality and operational efficiency in industrial applications.For instance,the LMViT model successfully identified fine scratches and minor surface irregularities that CNNs often misclassify.This study not only demonstrates LMViT’s potential for real-world defect detection but also underscores the promise of other transformer-based architectures like Token to Token ViT,ViT without memory,and Parallel ViT in industrial scenarios where complex spatial relationships are key.Future research may focus on enhancing LMViT’s computational efficiency for deployment in real-time quality control systems.
基金supported by the National Nature Science Foundation of China,No.31770180the Youth Innovation Promotion Association CAS,No.2016303
文摘Hepatitis B virus(HBV) infection is a global public health concern. HBV causes chronic infection in patients and can lead to liver cirrhosis, hepatocellular carcinoma, and other severe liver diseases. Thus, understanding HBV-related pathogenesis is of particular importance for prevention and clinical intervention. HBV surface antigens are indispensable for HBV virion formation and are useful viral markers for diagnosis and clinical assessment. During chronic HBV infection, HBV genomes may acquire and accumulate mutations and deletions, leading to the expression of defective HBV surface antigens. These defective HBV surface antigens have been found to play important roles in the progression of HBV-associated liver diseases. In this review, we focus our discussion on the nature of defective HBV surface antigen mutations and their contribution to the pathogenesis of fulminant hepatitis B. The relationship between defective surface antigens and occult HBV infection are also discussed.
基金supported by the National Natural Science Foundation of China(21865025)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_15R46)
文摘Defect engineering has been used to develop low-cost and effective catalysts to boost oxygen reduction reactions.However,the development of catalysts that use metal cation vacancies as the active sites for oxygen reduction reaction is lacking.In this study,ZnS nanoparticles on N-doped carbon serve as an oxygen reduction reaction catalyst.These catalysts were prepared via a one-step method at 900℃.Amazingly,the high-resolution transmission electron microscope image revealed obvious defects in the ZnS nanoparticles.These facilitated the catalyst synthesis,and the product displayed good electrocatalytic performance for the oxygen reduction reaction in an alkaline medium,including a lower onset potential,lower mid-wave potential,four electron transfer process,and better durability compared with 20 wt%Pt/C.More importantly,the density functional theory results indicated that using the Zn vacancies in the prepared catalyst as active sites required a lower reaction energy to produce OOH*from*OO toward oxygen reduction reaction.Therefore,the proposed catalyst with Zn vacancies can be used as a potential electrocatalyst and may be substitutes for Pt-based catalysts in fuel cells,given the novel catalyst’s resulting performance.
基金supported by the 973 Program(No.2014CB049000,2011CB610304)National Natural Science Foundation of China(11372062,91216201)+2 种基金LNET Program(LJQ2013005)China Postdoctoral Science Foundation(2014M551070)111Project(B14013)
文摘Commercially available lattices contain various kinds of morphological imperfections which result in great degradation in lattices' mechanical properties, therefore, to obtain imperfection insensitive lattice structure is obviously a practical research subject. Hierarchical structure materials were found to be a class of promising anti-defect materials, This paper builds hierarchical lattice by adding soft adhesion to lattice's cell edges and numerical results show that its imperfection sensitivity to missing bars is minor compared with the classic lattice. Soft adhesion with appropriate properties reinforce cell edge's bending stiffness and thus reduce the bending deformation in lattice caused by missing bars defect, which is confirmed by statistical analysis of normalized node displacements of imperfect lattices under hydrostatic compression and shear loads.
基金supported by the National Natural Science Foundation of China (Grant No. 51131005)
文摘The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.
基金Project supported by the National Natural Science Foundation of China(Grant No.51202032)the National Key Project for Basic Research of China(Grant No.2011CBA00200)+1 种基金the Natural Science Foundation of Fujian Province,China(Grant Nos.2012J01004 and 2013J01009)the Funds from the Fujian Provincial Education Bureau,China(Grant No.GA12064)
文摘In this work the thermal transport properties of graphene nanoribbons with randomly distributed vacancy defects are investigated by the reverse non-equilibrium molecular dynamics method. We find that the thermal conductivity of the graphene nanoribbons decreases as the defect coverage increases and is saturated in a high defect ratio range. Further analysis reveals a strong mismatch in the phonon spectrum between the unsaturated carbon atoms in 2-fold coordination around the defects and the saturated carbon atoms in 3-fold coordination, which induces high interfacial thermal resistance in defective graphene and suppresses the thermal conductivity. The defects induce a complicated bonding transform from sp2 to hybrid sp--sp2 network and trigger vibration mode density redistribution, by which the phonon spectrum conversion and strong phonon scattering at defect sites are explained. These results shed new light on the understanding of the thermal transport behavior of graphene-based nanomaterials with new structural configurations and pave the way for future designs of thermal management phononic devices.
文摘High‐entropy materials are emerging electrocatalysts by integrating five or more elements into one single crystallographic phase to optimize the electronic structures and geometric environments.Here,a rocksalt‐type high‐entropy oxide Mg_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2)Zn_(0.2)O(HEO)is developed as an electrocatalyst towards the oxygen evolution reaction(OER).The obtained HEO features abundant cation and oxygen vacancies originating from the lattice mismatch of neighboring metal ions,together with enlarged Co/Ni‒O covalency due to the introduction of less electronegative Mg and Zn.As a result,the HEO exhibits superior intrinsic OER activities,delivering a turnover frequency(TOF)15 and 84 folds that of CoO and NiO at 1.65 V,respectively.This study provides a mechanistic understanding of the enhanced OER on HEO and demonstrates the potential of high‐entropy strategy in developing efficient oxygen electrocatalysts by elaborately incorporating low‐cost elements with lower electronegativity.
基金supported by the National Natural Science Foundation of China(Grant Nos.21701043,21825201 and U19A2017)the Provincial Natural Science Foundation of Hunan(2019GK2031)+1 种基金the Open Project Program of Key Laboratory of Low Dimensional Materials&Application Technology(Xiangtan University),Ministry of Education,China(No.KF20180202)the China Postdoctoral Science Foundation(Grant Nos.2019 M662766,2019 M662759,2020 M682549,and 2020 M672473)。
文摘One of the fundamental driving forces in the materials science community is the hunt for new materials with specific properties that meet the requirements of rapidly evolving technology.
基金Project supported by the Ministry of Science and Technology of China (No.2001BA803B03-05).
文摘The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas,such as oil and gas indus- try,power plant engineering and chemical factories.An iterative algorithm is presented for the kinematic limit analysis of 3-D rigid-perfectly plastic bodies.A numerical path scheme for radial loading is adopted to deal with complex multi-loading systems.The numerical procedure has been applied to carry out the plastic collapse analysis of pipelines with part-through slot under internal pressure,bending moment and axial force.The effects of various shapes and sizes of part-through slots on the collapse loads of pipelines are systematically investigated and evaluated.Some typical failure modes corresponding to different configurations of slots and loading forms are studied.
基金Liaoning Revitalization Talents Program-Pan Deng Scholars(XLYC1802005)Liaoning Bai-QianWan Talents Program,the National Science Fund of Liaoning Province for Excellent Young Scholars,Science and Technology Innovative Talents Support Program of Shenyang(RC180166)+2 种基金Australian Research Council(ARC)through Discovery Early Career Researcher Award(DE150101306)Linkage Project(LP160100927)Faculty of Science Strategic Investment Funding 2019 of University of Newcastle,and CSIRO Energy,Australia.
文摘In the viewpoint of ammonia economy,electrochemical N2 reduction reaction(NRR)under mild condition is a very promising approach for sustainable development.By virtue of robust activity and low cost,transition-metalbased materials become one kind of the most attractive electrocatalysts in realizing ammonia synthesis to the industrial level.However,the investigation related to NRR electrocatalysts still mainly rely on costly substance or fabrication process,which greatly restrict their large-scale applications.In this work,a simple fabricated FeS2 electrode is adopted as NRR catalysts.The abundant surface defects due to the existence of Cr element,as well as the synergistic effect between FeS2 crystal planes provided excellent electrocatalytic performance with a high NH3 yield rate(11.5μg h^-1mg^-1 Fe)and Faradaic efficiency(14.6%)at-0.2 V vs.reversible hydrogen electrode(RHE)toward NRR under ambient conditions.The superior catalytic performance of such non-precious metal catalysts would strongly promote the application of NRR process industrially.
基金financially supported by the Australian Research Council (ARC)
文摘The exploration of highly active and durable cathodic oxygen reduction reaction(ORR)catalysts with economical production cost is still the bottleneck to realize the large‐scale commercialization of fuel cells and metal‐air batteries.Given that carbon support is crucial to the electrocatalysts,and Pt is the best‐known ORR catalyst so far,in this work,we employed a simple impregnation method for synthesizing a kind of defective activated carbon(D‐AC)supported low Pt content electrocatalysts for the ORR.The reduction conditions of the Pt‐containing precursor were firstly optimized,and the influence of the Pt loading amount on the ORR was investigated as well.The results show that the obtained D‐AC@5.0%Pt sample(contains5wt%Pt)has surpassed the commercial Pt/C with20wt%Pt for the ORR in an alkaline solution.In the meantime,it is more stable than the commercial Pt/C.The outstanding ORR performance of the D‐AC@5.0%Pt confirms that both the unique defects in the D‐AC and the introduced Pt particles are indispensable to the ORR.Particularly,m the ORR activity of the synthesized catalysts is superior to most of the reported counterparts,but with much easier preparation methods and lower production cost,making them more advantageous in practical fuel cell applications.
基金This research was funded by the Canadian Centre for Clean Coal/Carbon and Mineral Processing Technologies(C5MPT),the National Key R&D Program of China(2017YFB0310803)and the China Scholarship Council(CSC).We thank the NanoFAB at the University of Alberta for the convenience of instruments use,and the kindly help of Nanqi Duan and Chao Qi on sample characterization.
文摘Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was synthesized through employing defective Ti0_(2) nanosheets as solid support for photo-catalytic water splitting.It indicated that the surface oxygen vacancies on defective Ti0_(2) nanosheets could effectively stabilize the single-atomic Pt sites through constructing a three-center Ti-Pt-Ti structure.The Ti-Pt-Ti structure can hold the stability of isolated single-atomic Pt sites and facilitate the separation and transfer of photoinduced charge carriers,thereby greatly improving the photocatalytic H2 evolution.Notably,our synthesized photocatalyst exhibited a remarkably enhanced H2 evolution performance,and the H2 production rate is up to 13460.7μmol h^(-1)·g^(-1),which is up to around 29.0 and 4.7 times higher than those of Ti0_(2) nanosheets and Pt nanoparticles-Ti0_(2).In addition,a plausible enhanced reaction mechanism was also proposed combining with photo-electrochemical characterizations and density functional theoiy(DFT)calculation results.Ultimately,it is believed that this work highlights the benefits of a single-site catalyst and paves the way to rationally design the highly active and stable single-atomic site photocatalysts on metal oxide support.
基金financially supported by the Anhui Provincial Natural Science Foundation(1908085MB42)the National Natural Science Foundation of China(51372062)。
文摘In this study,a series of metal-organic frameworks(MOFs)NH_(2)-UiO-66-x HAc catalysts were synthesized by solvothermal method using acetic acid(HAc)as a modulator,and were applied to the cycloaddition of CO_(2)and epichlorohydrin(EPIC)under ambient pressure.Influences of the modulation by HAc on morphologies and structures of the MOFs are demonstrated via PXRD,FESEM,FTIR,N_(2)adsorption-desorption,XPS and ^(1)H NMR characterizations.The results show that the MOFs containing mesoporous pores can be prepared by adjusting the concentration of HAc.By optimizing the amount of HAc added,the specific surface area of NH_(2)-UiO-66-8 HAc is as high as 879.17 m^(2)·g^(-1),which is 28.3%higher than that of the original MOFs.And the evaluation of catalytic performance showed that HAc modulation enhanced the activity of NH_(2)-UiO-66-x HAc under mild conditions.The exposure of Lewis acid sites,increased specific surface area and porosity via the modulation of HAc defective ligand can be supposed the key factors to determine the enhanced catalytic activities.In addition,considering the influence of gas concentration on the reaction,the concept of TOP(Turnover of Pressure,defined as the mass of conversions of a unit mass catalyst under unit pressure and unit time)was first proposed in this article.
文摘Graphene,as a proof-of-concept two-dimensional material,has proven to have excellent physical and chemical properties.Its derivatives,such as defective or doped graphene,are also applied as catalytic materials for metal-air batteries(MABs).MABs have been recognized as possible candidates for new-generation energy storage systems due to their ultra-high theoretical energy density.So far,graphene and its derivatives with optimized structures have been widely explored to improve the electrochemical performance in MABs.Generally speaking,perfect graphene crystalline is inert for many catalytic processes,while defects and heteroatoms can endow graphene with high activity for many electrocatalytic reactions.Under this circumstance,recent progress is summarized for defective/doped graphene as air cathodes in aqueous or organic MABs,which are actually different electrochemical systems with distinct requirements for air cathodes.Also,the relationship is clarified between graphene defects/doping and electrocatalytic mechanisms that can be the guidance for catalyst design.Future directions are also prospected for the development of graphene-based MAB cathodes.
基金This work was supported by the National Key Research and Development Program of China(No.2020YFA0211000)the National Natural Science Foundation of China(Nos.21876114,21761142011,and 51572174)+3 种基金the Shanghai Government(Nos.19DZ1205102 and 19160712900)the International Joint Laboratory on Resource Chemistry(No.IJLRC)the Ministry of Education of China(No.PCSIRT_IRT_16R49)This research was also supported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,the Shuguang Research Program of Shanghai Education Committee,and the Shanghai Engineering Research Center of Green Energy Chemical Engineering(No.18DZ2254200).
文摘NH_(2)-UIO66(NU)is a promising photocatalyst for the reduction of Cr(VI)to low-toxic Cr(III)driven by visible light under ambient conditions.However,the main limitation in this process is the ineffi cient ligand to metal charge transfer(LMCT)of photo-excited electrons,which is caused by inherent energy gap(ΔE_(LMCT)).This study synthesized the defective NU(NUXH,where X is the molar equivalent of the modulator)with reducedΔE_(LMCT)through linkers removal via acid treatment.The electronic structure of NUX-H was systematically investigated,and the results indicated that the structural defects in NUX-H strongly altered the environment of the Zr atoms.Furthermore,they substantially lowered the energy of the unoccupied d orbitals(LUMO),which was benefi cial to effi cient LMCT,resulting in an improved photocatalytic activity of NUX-H toward high-concentration(100 mg/L)Cr(VI)reduction.Compared to NU with defect-free structure,the reducing rate of Cr(VI)was increased by 47 times.This work introduced an alternative strategy in terms of designing effi cient photocatalysts for reducing Cr(VI)under ambient conditions.