Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless com...Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.展开更多
Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that ...Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.展开更多
In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal...To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.展开更多
The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when th...The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.展开更多
According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfe...According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.展开更多
A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize cu...A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize customers. In the second period, targeted advertising plays an informative role and acts as a price discrimination device. The firms' optimal advertising and pricing strategies under imperfect targeting are compared with those under perfect targeting. Equilibrium decisions show that, under imperfect targeting, when the advertising cost is low enough, both firms will choose to target ads at the rivals' old segments. This equilibrium, which could not exist under perfect targeting, results in two opposite results. When cost is high, the effect of mis-targeting will soften price competition and increase profits; on the contrary, when cost is low enough, it will lead to aggressive price competition and profit loss with the increase of imperfect targeting, so firms may have incentives to reduce the mis- targeting degree.展开更多
The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer lat...The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.展开更多
The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The ...The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.展开更多
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and...A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.展开更多
A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect main...A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.展开更多
A probabilistic progressive failure analyzing method is applied to estimating the reliability of a simply supported laminated composite plate with an initial imperfection under bi-axial compression load. The initial i...A probabilistic progressive failure analyzing method is applied to estimating the reliability of a simply supported laminated composite plate with an initial imperfection under bi-axial compression load. The initial imperfection and the strength parameters are considered as random variables. Ply-level failure probability is evaluated by the first order reliability method (FORM) together with the Tsai-Wu strength criterion and Tan criterion. Current stresses in the laminated structure are calculated by the classical lamination theory with the stiffness modified based on the last step ply failure. Probabilistically dominant ply-level failure sequences leading to overall system failure are identified, based on which the system failure probability is estimated. A numerical example is presented to demonstrate the methodology proposed. Through parameter studies it is shown that the deviation of the initial imperfection and some of the strength parameters largely influence the system reliability.展开更多
The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stif...The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.展开更多
To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerica...To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.展开更多
Investigators are attracted by the complexity and significance of preventive maintenance problem,and there are hundreds of maintenance models and methods to solve the maintenance problems of companies and army,going w...Investigators are attracted by the complexity and significance of preventive maintenance problem,and there are hundreds of maintenance models and methods to solve the maintenance problems of companies and army,going with a lot of investigative harvests. However,one-component system or series system is focused by most of the literature.The problem of preventive maintenance(PM) on cold standby repairable system does not attach importance despite the fact that the cold standby repairable system is ubiquitous in engineering systems.In this paper,an optimal replacement model for gamma deteriorating system is studied.This methodology presented uses a gamma distribution to model the material degradation,and the impact of imperfect maintenance actions on system reliability is investigated.After an imperfect maintenance action,the state of a degrading system is assumed as a random variable and the maintenance time follows a geometric process.A maintenance policy(N)is applied by which the system will be repaired whenever it experiences the Nth PM,and an optimal policy(N~*) could be determined numerically or analytically for minimizing the long-run average cost per unit time.A numerical example about how to confirm the optimal maintenance time by the inspecting information of liquid coupling device is given to demonstrate the use of this policy.This paper presents a condition-based replacement policy for cold standby repairable system under continuous monitoring.Its contribution embody in two aspects,relaxing the restrictions of hypothesis and investigating the condition-based maintenance policy of the cold standby repairable system which is ignored by others.展开更多
The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. I...The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.展开更多
Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) mea...Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.展开更多
基金supported in part by the Sichuan Science and Technology Program(Grant No.2023YFG0316)the Industry-University Research Innovation Fund of China University(Grant No.2021ITA10016)+1 种基金the Key Scientific Research Fund of Xihua University(Grant No.Z1320929)the Special Funds of Industry Development of Sichuan Province(Grant No.zyf-2018-056).
文摘Due to the interdependency of frame synchronization(FS)and channel estimation(CE),joint FS and CE(JFSCE)schemes are proposed to enhance their functionalities and therefore boost the overall performance of wireless communication systems.Although traditional JFSCE schemes alleviate the influence between FS and CE,they show deficiencies in dealing with hardware imperfection(HI)and deterministic line-of-sight(LOS)path.To tackle this challenge,we proposed a cascaded ELM-based JFSCE to alleviate the influence of HI in the scenario of the Rician fading channel.Specifically,the conventional JFSCE method is first employed to extract the initial features,and thus forms the non-Neural Network(NN)solutions for FS and CE,respectively.Then,the ELMbased networks,named FS-NET and CE-NET,are cascaded to capture the NN solutions of FS and CE.Simulation and analysis results show that,compared with the conventional JFSCE methods,the proposed cascaded ELM-based JFSCE significantly reduces the error probability of FS and the normalized mean square error(NMSE)of CE,even against the impacts of parameter variations.
基金supported by the National Natural Science Foundation of China (81972034,92068104 and 82002262 to R.X.)the National Key R&D Program of China (2020YFA0112900 to R.X.)+5 种基金Project of Xiamen Cell Therapy Research Center (3502Z20214001 to R.X.)supported by a the NIH grant of US (R01AR075585,R01HD115274,R01CA282815 to M.B.G.)Career Award for Medical Scientists from the Burroughs Wellcome Funda Pershing Square Sohn Cancer Research Alliance and the Maximizing Innovation in Neuroscience Discovery (MIND)Prizesupported by a Jump Start Research Career Development Award from Weill Cornell Medicinea Study Abroad Scholarships from the Mogam Science Scholarship Foundation。
文摘Osteogenesis imperfecta(OI)is a disorder of low bone mass and increased fracture risk due to a range of genetic variants that prominently include mutations in genes encoding typeⅠcollagen.While it is well known that OI reflects defects in the activity of bone-forming osteoblasts,it is currently unclear whether OI also reflects defects in the many other cell types comprising bone,including defects in skeletal vascular endothelium or the skeletal stem cell populations that give rise to osteoblasts and whether correcting these broader defects could have therapeutic utility.
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
基金funded in part by the National Natural Science Foundation of China under Grant 61663024in part by the Hongliu First Class Discipline Development Project of Lanzhou University of Technology(25-225305).
文摘To address the problems of network congestion and spectrum resources shortage in multi-user large-scale scenarios,this paper proposes a twice random access OFDMA-NOMA-RA protocol combining the advantages of orthogonal frequency division multiple access(OFDMA)and non-orthogonal multiple access(NOMA).The idea of this protocol is that OFMDA is used to divide the entire frequency field into multiple orthogonal resource units(RUs),and NOMA is used on each RU to enable more users to access the channel and improve spectrum efficiency.Based on the protocol designed in this paper,in the case of imperfect successive interference cancellation(SIC),the probability of successful competition subchannels and the outage probability are derived for two scenarios:Users occupy the subchannel individually and users share the subchannel.Moreover,when two users share the channel,the decoding order of the users and the corresponding probabilities are considered.Then,the system throughput is obtained.To achieve better outage performance in the system,the optimal power allocation algorithm is proposed in this paper,which enables the optimal power allocation strategy to be obtained.Numerical results show that the larger the imperfect SIC coefficient,the worse the outage performance of weak users.Compared with pure OFDMA and NOMA,OFDMA-NOMA-RA always maintains an advantage when the imperfect SIC coefficient is less than a specific value.
基金Project supported by the National Natural Science Foundation of China(No.12102131)the Natural Science Foundation of Henan Province of China(No.242300420248)the International Science and Technology Cooperation Project of Henan Province of China(No.242102521010)。
文摘The Laguerre polynomial method has been successfully used to investigate the dynamic responses of a half-space.However,it fails to obtain the correct stress at the interfaces in a layered half-space,especially when there are significant differences in material properties.Therefore,a coupled Legendre-Laguerre polynomial method with analytical integration is proposed.The Rayleigh waves in a one-dimensional(1D)hexagonal quasicrystal(QC)layered half-space with an imperfect interface are investigated.The correctness is validated by comparison with available results.Its computation efficiency is analyzed.The dispersion curves of the phase velocity,displacement distributions,and stress distributions are illustrated.The effects of the phonon-phason coupling and imperfect interface coefficients on the wave characteristics are investigated.Some novel findings reveal that the proposed method is highly efficient for addressing the Rayleigh waves in a QC layered half-space.It can save over 99%of the computation time.This method can be expanded to investigate waves in various layered half-spaces,including earth-layered media and surface acoustic wave(SAW)devices.
基金Supported by the National Natural Science Foundation of China(61079013)the Natural Science Fund Project in Jiangsu Province(BK2011737)~~
文摘According to the failure characteristics of aircraft structure, a delay-time model is an effective method to optimize maintenance for aircraft structure. To imitate the practical situation as much as possible, imperfect inspections, thresholds and repeated intervals are concerned in delay-time models. Since the suggestion by the existing delay-time models that the inspections are implemented in an infinite time span lacks practical value, a de- lay-time model with imperfect inspection within a finite time span is proposed. In the model, the nonhomogenous Poisson process is adopted to obtain the renewal probabilities between two different successive inspections on de- fects or failures. An algorithm is applied based on the Nelder-Mead downhill simplex method to solve the model. Finally, a numerical example proves the validity and effectiveness of the model.
基金The National Natural Science Foundation of China(No.71371050)
文摘A two-period model is developed to investigate the competitive effects of targeted advertising with imperfect targeting in a duopolistic market. In the first period, two firms compete in price in order to recognize customers. In the second period, targeted advertising plays an informative role and acts as a price discrimination device. The firms' optimal advertising and pricing strategies under imperfect targeting are compared with those under perfect targeting. Equilibrium decisions show that, under imperfect targeting, when the advertising cost is low enough, both firms will choose to target ads at the rivals' old segments. This equilibrium, which could not exist under perfect targeting, results in two opposite results. When cost is high, the effect of mis-targeting will soften price competition and increase profits; on the contrary, when cost is low enough, it will lead to aggressive price competition and profit loss with the increase of imperfect targeting, so firms may have incentives to reduce the mis- targeting degree.
文摘The concept of the imperfection sensitive region is given. The advanced stochastic imperfection method is used to research the imperfection sensitive region of single-layer latticed domes. Taking a K6 single-layer latticed dome with a diameter of 50 m as an example, its imperfection sensitive region is made up of the first 12 kinds of joints. The influence of the imperfections of support joints on the stability of the K6 single-layer latticed dome is negligible. Influences of the joint imperfections of the main rib and the secondary rib on the structural stability are similar. The initial deviations of these joints all greatly lower the critical load of the dome. Results show that the method can analyze the structural imperfection sensitive region quantitatively and accurately.
文摘The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over- and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.
基金supported by the National Basic Research Program of China(2014CB049000,2014CB046506)the Project funded by China Postdoctoral Science Foundation(2014M551070)+2 种基金the National Natural Science Foundation of China(11372062,91216201,11128205)the Fundamental Research Funds for the Central Universities(DUT14RC(3)028)the LNET Program(LJQ2013005)
文摘A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.
基金supported by the National watural Science Foundation of China (60904002)
文摘A condition-based maintenance model for gamma deteriorating system under continuous inspection is studied. This methodology uses a gamma distribution to model the material degradation, and the impact of imperfect maintenance actions on the system reliability is investigated. The state of a degrading system immediately after the imperfect maintenance action is assumed as a random variable and the maintenance time follows a geometric process. Furthermore, the explicit expressions for the long-run average cost and availability per unit time of the system are evaluated, an optimal policy (ε^*) could be determined numeri- cally or analytically according to the optimization model. At last, a numerical example for a degrading system modeled by a gamma process is presented to demonstrate the use of this policy in practical applications.
基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministrythe Research Foundation of Huazhong University of Science and Technology
文摘A probabilistic progressive failure analyzing method is applied to estimating the reliability of a simply supported laminated composite plate with an initial imperfection under bi-axial compression load. The initial imperfection and the strength parameters are considered as random variables. Ply-level failure probability is evaluated by the first order reliability method (FORM) together with the Tsai-Wu strength criterion and Tan criterion. Current stresses in the laminated structure are calculated by the classical lamination theory with the stiffness modified based on the last step ply failure. Probabilistically dominant ply-level failure sequences leading to overall system failure are identified, based on which the system failure probability is estimated. A numerical example is presented to demonstrate the methodology proposed. Through parameter studies it is shown that the deviation of the initial imperfection and some of the strength parameters largely influence the system reliability.
基金Project(12 High-tech Urban C11) supported by High-tech Urban Development Program of Ministry of Land,Transport and Maritime Affairs,Korea
文摘The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.
基金The National Key Technology R&D Program of China(No.2012BAJ03B06)the National Natural Science Foundation of China(No.51308105)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Fundamental Research Funds for the Southeast University(No.KYLX_0152,SJLX_0084,KYLX_0149)
文摘To investigate the effects of initial geometric imperfection and material nonlinearity on the stability analysis of the suspen-dome, the steel roof of Jiangsu Culture Sports Center Gymnasium was utilized as a numerical model, and modal analyses were performed. Then, linear buckling analysis,geometric nonlinear stability analysis, geometric nonlinear stability analysis with initial imperfection, and double nonlinear analysis considering material nonlinearity and geometric nonlinearity were discussed in detail to compare the stability performance of the ellipse-like suspen-dome and the single-layer reticulated shell. The results showthat the cable-strut system increases the integrity of the suspen-dome, and moderates the sensibility of the single-layer reticulated shell to initial geometric imperfection. However, it has little influence on integral rigidity, fundamental vibration frequencies, linear ultimate live loads, and geometric nonlinear ultimate live loads without initial imperfection. When considering the material nonlinearity and initial imperfection, a significant reduction occurs in the ultimate stability capacities of these two structures. In this case, the suspen-dome with a lowrise-span ratio is sensitive to the initial imperfection and material nonlinearity. In addition, the distribution pattern of live loads significantly influences the instability modes of the structure, and the uniform live load with full span is not always the most dangerous case.
基金supported by National Natural Science Foundation of China(Grant No.60904002)
文摘Investigators are attracted by the complexity and significance of preventive maintenance problem,and there are hundreds of maintenance models and methods to solve the maintenance problems of companies and army,going with a lot of investigative harvests. However,one-component system or series system is focused by most of the literature.The problem of preventive maintenance(PM) on cold standby repairable system does not attach importance despite the fact that the cold standby repairable system is ubiquitous in engineering systems.In this paper,an optimal replacement model for gamma deteriorating system is studied.This methodology presented uses a gamma distribution to model the material degradation,and the impact of imperfect maintenance actions on system reliability is investigated.After an imperfect maintenance action,the state of a degrading system is assumed as a random variable and the maintenance time follows a geometric process.A maintenance policy(N)is applied by which the system will be repaired whenever it experiences the Nth PM,and an optimal policy(N~*) could be determined numerically or analytically for minimizing the long-run average cost per unit time.A numerical example about how to confirm the optimal maintenance time by the inspecting information of liquid coupling device is given to demonstrate the use of this policy.This paper presents a condition-based replacement policy for cold standby repairable system under continuous monitoring.Its contribution embody in two aspects,relaxing the restrictions of hypothesis and investigating the condition-based maintenance policy of the cold standby repairable system which is ignored by others.
基金supported by National Natural Science Foundation of China (Grant No. 51005041)Fundamental Research Funds for the Central Universities of China (Grant No. N090303005)Key National Science & Technology Special Project on High-Grade CNC Machine Tools and Basic Manufacturing Equipment of China (Grant No. 2010ZX04014-014)
文摘The reliability-based maintenance optimization model has been focused by the engineers and scholars but it has never been solved effectively to formulate the effect of a maintenance action on the optimization model. In existing works, the system reliability was assumed to be increased to 1 after a predictive maintenance. However, it is very difficult in the most practical systems. Therefore, a new reliability-based maintenance optimization model under imperfect predictive maintenance (PM) is proposed in this paper. In the model, the system reliability is only restored to R i (0<R i <1, i∈N, N is natural number set) after the ith PM. The system uptimes and the corresponding probability in two cases whether there is an unexpected fault in one cycle are derived respectively and the system expected uptime model is given. To formulate the system expected downtime, the probability of each imperfect PM number in one cycle is calculated. Then, the system expected total time model is obtained. The total expected long-term operation cost is composed of the expected maintenance cost, the expected loss due to the downtime and the expected additional cost due to the occurrence of an unexpected failure. They are modeled respectively in this work. Jointing the system expected total time and long-term operation cost in one cycle, the expected long-term operation cost per time could be computed. Then, the proposed maintenance optimization model is formulated where the objective function is to minimize the expected long-term operation cost per time. The results of numerical example show that the proposed model could scheme the optimal maintenance actions for the considered system when the required parameters are given and the optimal solution of the proposed model is sensitive to the parameters of effective age model and insensitive to other parameters. The proposed model effectively solves the problem of evaluating the effect of an imperfect PM on the system reliability and presents a more practical optimization method for the reliability-based maintenance strategy than the existing works.
基金National Natural Science Foundation of China (Grants 11402277 and 11332011) for financial support
文摘Experimental and numerical simulations were undertaken to estimate the effects of imperfect conditions on stress waves in split Hopkinson pressure bar (SHPB) experiments. The photonic Doppler velocimetry (PDV) measurement results show that the rise and fall times of an incident wave increases with an increasing inclination angle; also, the fluctuations of the incident wave disappear gradually with the increase of inclination angle. The following characteristics for various defects in the SHPB were obtained by numerical simulation: (1) the influence of a curved bar was negligible; (2) misalignment modestly affects the fluctuation characteristics, and bending waves were generated at this condition; (3) inclination and indentation of the impact end- surface had a great impact on the incident waves, and both of them increase the rise time of the incident wave by increasing the degree of defects. In view of the results, misalignment, inclination, and indentation in SHPB experiments should be minimized.