期刊文献+
共找到129篇文章
< 1 2 7 >
每页显示 20 50 100
A Cooperated Imperialist Competitive Algorithm for Unrelated Parallel Batch Machine Scheduling Problem
1
作者 Deming Lei Heen Li 《Computers, Materials & Continua》 SCIE EI 2024年第5期1855-1874,共20页
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed... This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems. 展开更多
关键词 Release time ASSIMILATION imperialist competitive algorithm batch processing machines scheduling
下载PDF
Imperialistic Competitive Algorithm:A metaheuristic algorithm for locating the critical slip surface in 2-Dimensional soil slopes 被引量:5
2
作者 Ali Reza Kashani Amir Hossein Gandomi Mehdi Mousavi 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期83-89,共7页
In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium ap... In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions. 展开更多
关键词 Meta-heuristic algorithms Morgen-stern and price method Non-circular slip surface imperialistic competitive algorithm
下载PDF
Diagnosis of Autism Spectrum Disorder by Imperialistic Competitive Algorithm and Logistic Regression Classifier
3
作者 Shabana R.Ziyad Liyakathunisa +1 位作者 Eman Aljohani I.A.Saeed 《Computers, Materials & Continua》 SCIE EI 2023年第11期1515-1534,共20页
Autism spectrum disorder(ASD),classified as a developmental disability,is now more common in children than ever.A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection ... Autism spectrum disorder(ASD),classified as a developmental disability,is now more common in children than ever.A drastic increase in the rate of autism spectrum disorder in children worldwide demands early detection of autism in children.Parents can seek professional help for a better prognosis of the child’s therapy when ASD is diagnosed under five years.This research study aims to develop an automated tool for diagnosing autism in children.The computer-aided diagnosis tool for ASD detection is designed and developed by a novel methodology that includes data acquisition,feature selection,and classification phases.The most deterministic features are selected from the self-acquired dataset by novel feature selection methods before classification.The Imperialistic competitive algorithm(ICA)based on empires conquering colonies performs feature selection in this study.The performance of Logistic Regression(LR),Decision tree,K-Nearest Neighbor(KNN),and Random Forest(RF)classifiers are experimentally studied in this research work.The experimental results prove that the Logistic regression classifier exhibits the highest accuracy for the self-acquired dataset.The ASD detection is evaluated experimentally with the Least Absolute Shrinkage and Selection Operator(LASSO)feature selection method and different classifiers.The Exploratory Data Analysis(EDA)phase has uncovered crucial facts about the data,like the correlation of the features in the dataset with the class variable. 展开更多
关键词 Autism spectrum disorder feature selection imperialist competitive algorithm LASSO logistic regression random forest
下载PDF
Optimal Allocation of STATCOM to Enhance Transient Stability Using Imperialist Competitive Algorithm
4
作者 Ayman Amer Firas MMakahleh +4 位作者 Jafar Ababneh Hani Attar Ahmed Amin Ahmed Solyman Mehrdad Ahmadi Kamarposhti Phatiphat Thounthong 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3425-3446,共22页
With the daily expansion of global energy consumption,developing the power grids is of uttermost importance.However,building a new trans-mission line is costly and time-consuming,so utilizing the same lines with possi... With the daily expansion of global energy consumption,developing the power grids is of uttermost importance.However,building a new trans-mission line is costly and time-consuming,so utilizing the same lines with possible higher transmission capacity is very cost-effective.In this regard,to increase the capacity of the transmission lines,the flexible alternating current transmission system(FACTS)has been widely used in power grids in recent years by industrialized countries.One of the essential topics in electrical power systems is the reactive power compensation,and the FACTS plays a significant role in controlling the reactive power current in the power grid and the system voltage oscillations and stability.When a static synchronous compensator(STATCOM)is embedded in a power system to increase the bus voltage,a supplementary damping controller can be designed to enhance the system oscillation damping.Given the expansion of the grids in the power system,the complexity of their optimization and the extraordinary ability of the imperialist competitive algorithm(ICA)for solving such problems,in this paper,the ICA has been used to determine the optimal position and size of the FACTS devices. 展开更多
关键词 STATCOM FACTS OPTIMIZATION transient stability imperialist competitive algorithm
下载PDF
Modified imperialist competitive algorithm-based neural network to determine shear strength of concrete beams reinforced with FRP 被引量:6
5
作者 Amir HASANZADE-INALLU Panam ZARFAM Mehdi NIKOO 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3156-3174,共19页
Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data ... Fiber reinforced polymers (FRPs), unlike steel, are corrosion-resistant and therefore are of interest;however, their use is hindered because their brittle shear is formulated in most specifications using limited data available at the time. We aimed to predict the shear strength of concrete beams reinforced with FRP bars and without stirrups by compiling a relatively large database of 198 previously published test results (available in appendix). To model shear strength, an artificial neural network was trained by an ensemble of Levenberg-Marquardt and imperialist competitive algorithms. The results suggested superior accuracy of model compared to equations available in specifications and literature. 展开更多
关键词 concrete shear strength fiber reinforced polymer (FRP) artificial neural networks (ANNs) Levenberg-Marquardt algorithm imperialist competitive algorithm (ica)
下载PDF
Machining Parameters Optimization of Multi-Pass Face Milling Using a Chaotic Imperialist Competitive Algorithm with an Efficient Constraint-Handling Mechanism
6
作者 Yang Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第9期365-389,共25页
The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.Howev... The selection of machining parameters directly affects the production time,quality,cost,and other process performance measures for multi-pass milling.Optimization of machining parameters is of great significance.However,it is a nonlinear constrained optimization problem,which is very difficult to obtain satisfactory solutions by traditional optimization methods.A new optimization technique combined chaotic operator and imperialist competitive algorithm(ICA)is proposed to solve this problem.The ICA simulates the competition between the empires.It is a population-based meta-heuristic algorithm for unconstrained optimization problems.Imperialist development operator based on chaotic sequence is introduced to improve the local search of ICA,while constraints handling mechanism is introduced and an imperialist-colony transformation policy is established.The improved ICA is called chaotic imperialist competitive algorithm(CICA).A case study of optimizing machining parameters for multi-pass face milling operations is presented to verify the effectiveness of the proposed method.The case is to optimize parameters such as speed,feed,and depth of cut in each pass have yielded a minimum total product ion cost.The depth of cut of optimal strategy obtained by CICA are 4 mm,3 mm,1 mm for rough cutting pass 1,rough cutting pass 1 and finish cutting pass,respectively.The cost for each pass are$0.5366 US,$0.4473 US and$0.3738 US.The optimal solution of CICA for various strategies with at=8 mm is$1.3576 US.The results obtained with the proposed schemes are better than those of previous work.This shows the superior performance of CICA in solving such problems.Finally,optimization of cutting strategy when the width of workpiece no smaller than the diameter of cutter is discussed.Conclusion can be drawn that larger tool diameter and row spacing should be chosen to increase cutting efficiency. 展开更多
关键词 CHAOTIC imperialist COMPETITIVE algorithm constraint-handling MECHANISM MULTI-PASS face MILLING machining parameters OPTIMIZATION cutting strategy
下载PDF
改进ICA求解柔性作业车间插单重调度问题 被引量:1
7
作者 唐亮 程峰 +1 位作者 吉卫喜 金志斌 《计算机工程与应用》 CSCD 北大核心 2023年第21期303-311,共9页
为解决柔性作业车间插单重调度问题,建立了以最大完工时间、总能耗、总延迟时间和总设备变更次数为目标函数的动态重调度模型,并对四个目标采用线性加权和法归一化,提出一种改进的帝国竞争算法(improved imperialist competitive algori... 为解决柔性作业车间插单重调度问题,建立了以最大完工时间、总能耗、总延迟时间和总设备变更次数为目标函数的动态重调度模型,并对四个目标采用线性加权和法归一化,提出一种改进的帝国竞争算法(improved imperialist competitive algorithm,I-ICA)作为全局优化算法。在传统帝国竞争算法(imperialist competitive algorithm,ICA)的基础上,引入帝国革命机制,来增加算法的全局搜索,同时引入帝国消除机制来加速算法的收敛和外部帝国入侵策略来增加算法的搜索广度,避免算法陷入“早熟”。针对订单插入点后未加工的工序,采用事件驱动策略重新调度。最后通过生产实例验证,将ICA、遗传算法(genetic algorithm,GA)和粒子群算法(particle swarm optimization,PSO)作为对比算法,验证了I-ICA在求解柔性作业车间插单重调度问题上的有效性和可行性。 展开更多
关键词 帝国竞争算法 重调度 入侵策略 消除机制
下载PDF
Fault Attribute Reduction of Oil Immersed Transformer Based on Improved Imperialist Competitive Algorithm
8
作者 Li Bian Hui He +1 位作者 Hongna Sun Wenjing Liu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第6期83-90,共8页
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ... The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer. 展开更多
关键词 transformer fault improved imperialist competitive algorithm rough set attribute reduction BP neural network
下载PDF
A New Method for Clustering Based on Development of Imperialist Competitive Algorithm
9
作者 Mohammad Reza Dehghani Zadeh Mohammad Fathian Mohammad Reza Gholamian 《China Communications》 SCIE CSCD 2014年第12期54-61,共8页
Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some m... Clustering is one of the most widely used data mining techniques that can be used to create homogeneous clusters.K-means is one of the popular clustering algorithms that,despite its inherent simplicity,has also some major problems.One way to resolve these problems and improve the k-means algorithm is the use of evolutionary algorithms in clustering.In this study,the Imperialist Competitive Algorithm(ICA) is developed and then used in the clustering process.Clustering of IRIS,Wine and CMC datasets using developed ICA and comparing them with the results of clustering by the original ICA,GA and PSO algorithms,demonstrate the improvement of Imperialist competitive algorithm. 展开更多
关键词 data mining homogeneous cluster imperialist competitive algorithm
下载PDF
基于帝国竞争反向传播神经网络的断块油田开发顺序优化
10
作者 徐庆岩 孙晓飞 +3 位作者 翟光华 王瑞峰 雷诚 张瑾琳 《石油地质与工程》 CAS 2024年第3期77-81,89,共6页
明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合... 明确断块油田群中断块的开发顺序是进行开发方案设计的前提条件。断块油田数量较少时,可以进行技术经济的组合对比,但是断块数量较多时会形成海量的组合,耗费时间也长。断块油田开发顺序评价的现有方法有权重评价法、层次分析法、综合模糊评判法等,这些方法在选择评价指标和指标权重上带有较强的主观性,无法做到完全客观的评价。因此本文提出一种基于帝国竞争算法改进的反向传播神经网络模型,首先采用Spearman相关系数法确定影响断块油田开发的主控因素,其次使用分段三次Hermite插值方法实现断块油田群开发数据库的扩充,最后在扩充后的大量数据库训练样本的基础上,基于帝国竞争算法改进的反向传播神经网络模型可以确定影响开发效果参数的权重并预测断块油田群中各断块油田的净现值,根据净现值大小可以确定每个断块的开发顺序。该方法以实际断块油田群的地质油藏数据库作为评价依据,断块油田的开发顺序更加的科学合理,项目整体的净现值也明显高于依靠传统方法确定的开发顺序组合,避免了人为主观性,也节省了数值模拟和经济评价的工作量,克服了现有方法的局限性,对于提高断块油田群开发综合效益具有重要意义。 展开更多
关键词 帝国竞争算法 反向传播神经网络 开发参数权重 投产顺序优化 断块油田群 净现值
下载PDF
机器视觉在采摘机器人识别与定位中的应用 被引量:2
11
作者 焦迎雪 董海涛 武文革 《机械设计与制造》 北大核心 2024年第2期280-285,共6页
针对采摘机器人的运行环境复杂,采摘效率无法满足实际生产需求。这里在采摘机器人体系结构的基础上,提出了一种基于机器视觉的夜间识别与定位方法。使用基于粒子群优化的独立成分分析方法来降低夜苹果图像中的噪声,然后使用PCNN分割方... 针对采摘机器人的运行环境复杂,采摘效率无法满足实际生产需求。这里在采摘机器人体系结构的基础上,提出了一种基于机器视觉的夜间识别与定位方法。使用基于粒子群优化的独立成分分析方法来降低夜苹果图像中的噪声,然后使用PCNN分割方法对图像进行分割并通过边缘检测等提取目标轮廓,最后通过改进的三点定圆法对目标果实进行定位。通过仿真验证了该方法的可行性。结果表明,该方法在夜间遮挡小于50%时识别率为94.3%,遮挡大于50%时识别率为89.05%,可以有效提高识别和定位的准确性。为机器人识别和定位技术的发展提供了一定的参考。 展开更多
关键词 机械视觉 采摘机械人 识别与定位 独立成分分析 三点定圆法
下载PDF
基于MICA的声级计频率计权数字IIR滤波器设计 被引量:5
12
作者 唐求 吴娟 +2 位作者 邱伟 沈洁 滕召胜 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第2期78-84,共7页
针对双线性变换法在设计声级计频率计权数字滤波器时存在固有频率失真问题,提出一种基于改进帝国竞争算法的数字IIR滤波器设计方法.为避免帝国竞争算法出现早熟收敛而陷入局部最优的问题,在帝国竞争算法同化阶段引入混沌函数来增大搜索... 针对双线性变换法在设计声级计频率计权数字滤波器时存在固有频率失真问题,提出一种基于改进帝国竞争算法的数字IIR滤波器设计方法.为避免帝国竞争算法出现早熟收敛而陷入局部最优的问题,在帝国竞争算法同化阶段引入混沌函数来增大搜索范围,与此同时,在帝国竞争阶段引入克隆进化算子,引导算法向IIR滤波器参数最优解方向搜索,得到改进帝国竞争算法.在研究声级计A、C计权的IIR滤波器误差来源的基础上,利用改进帝国竞争算法对声级计频率计权数字IIR滤波器系数进行寻优求解,构建基于改进帝国竞争算法的频率计权数字IIR滤波器优化模型.仿真与实验结果表明,本文提出的数字滤波器设计方法精度较高,且滤波器的误差能控制在10-3dB数量级范围内.在噪声环境下不同声信号级进行的频率计权测试结果表明,改进帝国竞争算法测试的声信号级的计权误差能维持在10-2 dB数量级范围内,完全满足国家标准GB/T3241—2010对1级声级计的设计要求. 展开更多
关键词 声级计 频率计权 数字IIR滤波器设计 帝国竞争算法 混沌函数 克隆进化
下载PDF
基于FAST-ICA的城市轨道交通乘客路径选择方法 被引量:2
13
作者 连晓峰 叶璐 +2 位作者 王炎 贾利民 马慧茹 《系统仿真学报》 CAS CSCD 北大核心 2019年第8期1692-1701,共10页
提出一种基于改进帝国主义竞争算法(FAST-ICA)的城市轨道交通乘客路径选择方法,以提高乘客路径选择的效率。选取6种影响乘客路径选择的关键因素,在此基础上,构建广义出行费用函数,并建立乘客路径选择模型;通过改进帝国主义竞争算法(ICA... 提出一种基于改进帝国主义竞争算法(FAST-ICA)的城市轨道交通乘客路径选择方法,以提高乘客路径选择的效率。选取6种影响乘客路径选择的关键因素,在此基础上,构建广义出行费用函数,并建立乘客路径选择模型;通过改进帝国主义竞争算法(ICA)中的帝国竞争方式,在ICA算法的每次迭代中快速瓜分最弱帝国集团,以加快收敛速度;基于所提出的FAST-ICA算法求解乘客在不同环境下的路径选择问题,并进行深入分析。实验结果表明,FAST-ICA算法具有良好的稳定性,且收敛速度较快。 展开更多
关键词 城市轨道交通 关键影响因素选取 路径选择模型 快速帝国主义竞争算法
下载PDF
面向资源约束的电动公交车充电调度策略 被引量:4
14
作者 李斌 黄起彬 《交通运输工程与信息学报》 2024年第1期79-94,共16页
为减少公交运营成本、合理制定插入式充电模式下公交总站的电动公交车充电调度方案,本文基于帝国竞争算法提出了一种面向资源约束的公交车充电调度策略(RCO-CSS)。基于电动公交车运营的时空特点和充放电特性,应用多技能资源约束多项目... 为减少公交运营成本、合理制定插入式充电模式下公交总站的电动公交车充电调度方案,本文基于帝国竞争算法提出了一种面向资源约束的公交车充电调度策略(RCO-CSS)。基于电动公交车运营的时空特点和充放电特性,应用多技能资源约束多项目调度问题(MSRC-MPSP)运筹规划思想对电动公交车充电问题进行抽象建模,以车队规模与充电桩数量为主要资源参数,以最小化充电成本和日均设备购置成本为目标,构建资源约束充电调度模型,进而设计一种二阶段演化帝国竞争算法(TSE-ICA)对模型进行求解,输出最佳的充电调度方案及匹配的行车运营计划。采用4个分别包含5、10、20和36条线路的公交运行实例对RCO-CSS进行了性能评估与有效性验证。在实例探讨中,首先运用Taguich法对资源参数进行了敏感性分析,发现资源越宽裕,模型输出的日充电费用越小,但车辆与充放电设备平摊至每日的购置成本越大;其次,将TSE-ICA与其他4种先进的元启发式算法进行实验数值对比,验证了所提算法的寻优性能;最后,通过与无序充电调度策略和常规有序充电调度策略进行比较,证明了RCO-CSS能够更好地降低用电成本、设备购置成本和电池充放电次数。基于MSRC-MPSP和TSE-ICA的RCO-CSS为公交运营商制定充电调度方案和行车运营计划提供了一种可行且敏捷高效的新思路。 展开更多
关键词 智能交通 充电调度策略 多技能资源约束多项目调度问题 电动公交车 帝国竞争算法 行车计划 Taguich法
下载PDF
基于ICA阈值优化耦合信息熵的边缘提取算法 被引量:3
15
作者 郭健 李智 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第9期150-155,共6页
为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的... 为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的分段阈值选择合适的阈值,引入了帝国主义竞争(imperialist competitive algorithm,ICA)优化算法,计算图像的最优阈值,根据获得的最优阈值将每个图像子块划分为不同的均匀区域;最后,通过计算每个均匀区域的信息熵,利用信息熵检测所有处于不同均匀区域的边界像素来提取边缘.实验结果表明:与当前常用的边缘提取算法比较,本文算法具有更高的品质因数与边缘连续性,能够抑制过于微小和琐碎的细节,突出有效的边缘信息,边缘定位精度高且平滑连贯,能够准确地提取目标轮廓. 展开更多
关键词 边缘提取 帝国主义竞争算法 分段阈值 信息熵 灰度分布模式 均匀区域
下载PDF
面向高并发的云平台计算资源分配策略设计
16
作者 刘永清 韩泽华 +2 位作者 郭晓娟 张立新 崔粉霞 《电子设计工程》 2024年第18期52-56,共5页
针对云计算平台服务器利用效率偏低以及用户请求响应速度较慢的问题,同时兼顾该平台的收益最大化,文中提出一种面向高并发的云平台计算资源分配方法。该方法采用帝国主义竞争算法和K-means算法对云计算平台用户提交的工作负载进行聚类,... 针对云计算平台服务器利用效率偏低以及用户请求响应速度较慢的问题,同时兼顾该平台的收益最大化,文中提出一种面向高并发的云平台计算资源分配方法。该方法采用帝国主义竞争算法和K-means算法对云计算平台用户提交的工作负载进行聚类,并使用决策树算法来完成资源的分配,从而提供最佳的资源供应方案。K-means聚类算法可有效提高帝国主义竞争算法中殖民地的初始人口,防止聚类过程中得到局部最优解而忽略了全局最优解,且进一步提升了算法的收敛速度。通过仿真实验证明,所提方法的平均响应时间与CPU利用率均优于K-means聚类及决策树等传统方法,而与K-means相比,该方法的平均响应时间降低了1.017s,CPU利用率则提高了25.38%。 展开更多
关键词 云计算平台 资源分配 帝国主义竞争算法 K-MEANS
下载PDF
基于高斯-柯西变异帝国竞争算法的微电网优化调度 被引量:1
17
作者 陈海旭 余畅文 +4 位作者 卢银均 陈磊 马小龙 刘闯 刘炬 《电气自动化》 2024年第1期1-4,共4页
为提高微电网运行经济性,建立了以微电网综合运行成本最小为目标函数的微电网优化调度模型。利用高斯变异和柯西变异对帝国竞争算法进行改进,采用高斯-柯西帝国竞争算法对微电网优化调度模型进行求解,并与其他优化算法对比分析。结果表... 为提高微电网运行经济性,建立了以微电网综合运行成本最小为目标函数的微电网优化调度模型。利用高斯变异和柯西变异对帝国竞争算法进行改进,采用高斯-柯西帝国竞争算法对微电网优化调度模型进行求解,并与其他优化算法对比分析。结果表明,高斯-柯西帝国竞争算法求解的微电网综合运行成本为4485.62元,低于其他优化算法;调度方案能够优化微电网系统内各分布式电源出力,合理与上级配电网交换电能,使微电网综合运行成本最小。验证了模型的正确性及求解方法的优越性。 展开更多
关键词 微电网 优化调度 帝国竞争算法 高斯变异 柯西变
下载PDF
基于计算物流与计算智能的多码头泊位堆场联合调度
18
作者 李斌 唐志斌 《计算机系统应用》 2024年第8期1-17,共17页
针对同一地区邻近集装箱码头往往物流功能相似、货源腹地重叠、无序竞争突出和资源利用率较低等特点,本文重点探讨了隶属于同一组织内且位置相邻多集装箱码头的泊位-堆场一体化计划调度(multiple container terminal tactical berth and... 针对同一地区邻近集装箱码头往往物流功能相似、货源腹地重叠、无序竞争突出和资源利用率较低等特点,本文重点探讨了隶属于同一组织内且位置相邻多集装箱码头的泊位-堆场一体化计划调度(multiple container terminal tactical berth and yard incorporate integrative scheduling,MCT-TBY-IIS)问题.基于计算物流,利用多重多背包问题将MCT-TBY-IIS抽象和分解为考虑泊位水深约束和出口集装箱可转港作业的多码头动态连续泊位分配和多码头周期滚动堆场分配两个中度耦合子问题,进而在计算物流面向问题探索的思想下,提出了面向层次嵌套结构的二阶段改进帝国竞争算法(hierarchical nesting oriented two-stage improved imperialist competitive algorithm,HNOTSI-ICA)对MCT-TBY-IIS进行求解优化.最后,面向我国东南沿海的典型多码头联合作业实例,遴选出面向帝国兴替的双同化帝国竞争改进算法和面向0-1背包问题的二进制帝国竞争算法组合应用于HNO-TSI-ICA,其在求解MCT-TBY-IIS时效果较好,且堆场作业子系统目标成本的结构较稳定,其不受计划期内港口负荷和计划周期长度的影响,其中,出口箱区集装箱水平运输成本的贡献度在堆场作业子目标成本的比重最大,稳定在83%左右.通过对MCT-TBY-IIS的建模与优化,可以发现多码头联合作业模式有较好的潜力帮助同一组织内邻近的多码头降本增效和提高核心资源的利用率. 展开更多
关键词 运筹规划 多集装箱码头联合作业 计算物流 泊位与堆场协同分配 帝国竞争算法
下载PDF
电-气-热耦合能源网络的互动逻辑时序优化仿真
19
作者 方鑫 潘益 +2 位作者 袁晓冬 杨景刚 孙天奎 《微型电脑应用》 2024年第4期81-84,共4页
为规避电-气-热耦合能源网络互动逻辑冲突,确认电-气-热耦合备用容量,提出电-气-热耦合能源网络的互动逻辑时序优化仿真方法。建立由电力和燃气2个部分组成的电-气-热耦合能源网络动态模型,依据电-气-热耦合能源网络动态数据建立其互动... 为规避电-气-热耦合能源网络互动逻辑冲突,确认电-气-热耦合备用容量,提出电-气-热耦合能源网络的互动逻辑时序优化仿真方法。建立由电力和燃气2个部分组成的电-气-热耦合能源网络动态模型,依据电-气-热耦合能源网络动态数据建立其互动逻辑时序模型,按照该模型的约束条件,使用帝国竞争算法对电-气-热耦合能源网络互动逻辑时序模型进行帝国形成、通化机制、帝国竞争分析,完成优化求解和时序优化互动逻辑。实验结果表明,该方法可有效优化电-气-热耦合能源网络的互动逻辑时序,使其火电开机容量得到有效降低,同时也提升了耦合能源网络的备用容量。 展开更多
关键词 耦合能源网络 互动逻辑 时序优化 帝国竞争算法
下载PDF
基于ICA-NN的短期风功率预测研究
20
作者 周专 姚秀萍 +2 位作者 王维庆 任华 申盛召 《四川电力技术》 2013年第5期5-8,共4页
随着风电大规模的接入电网,风电对电网的影响越来越大。由于风电出力具有随机性、间歇性和不可控性,导致风电对电网调度运行带来巨大的挑战。为了充分利用风电,必须将风电由未知变为基本已知,提高对风电出力的预测精度。提出一种基于帝... 随着风电大规模的接入电网,风电对电网的影响越来越大。由于风电出力具有随机性、间歇性和不可控性,导致风电对电网调度运行带来巨大的挑战。为了充分利用风电,必须将风电由未知变为基本已知,提高对风电出力的预测精度。提出一种基于帝国主义竞争算法的神经网络(ICA-NN)方法来提高短期风功率预测的精度。在该方法中,首先,建立一个基于多层感知器(MLP)人工神经网络的风速预测模型,然后,用帝国主义竞争算法优化神经网络中的权值。将该预测方法应用于新疆某风电场,验证了该方法应用于短期风功率预测的有效性,证明了该方法可以提高短期风功率预测的精度。 展开更多
关键词 帝国主义的竞争算法-神经网络 数值天气预报 短期风功率预测 风电场
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部