期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
CFD simulations of quenching process for partial oxidation of methane:Comparison of jet-in-cross-flow and impinging flow configurations
1
作者 Xinyu Yu Tianwen Chen +1 位作者 Qi Zhang Tiefeng Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第5期903-913,共11页
A new quenching process using the cold pyrolysis gas has been proposed for the partial oxidation(POX) of methane to recover the heat. The mixing of hot product gas and cold pyrolysis gas in milliseconds is critical to... A new quenching process using the cold pyrolysis gas has been proposed for the partial oxidation(POX) of methane to recover the heat. The mixing of hot product gas and cold pyrolysis gas in milliseconds is critical to this new approach. Two most widely-used rapid mixing configurations, i.e. the jet-in-cross-flow(JICF) and impinging flow configurations, are compared in terms of mixing and quenching performances using computational fluid dynamics(CFD) coupled with detailed reaction mechanism Leeds 1.5. The mixedness, residence time distribution, temperature decreasing rate and loss ratio of acetylene during the quenching are systematically studied. The results show that the impinging flow has a more uniform mixing and narrower residence time distribution than the JICF.However, the temperature decreasing rate of the mainstream is faster in the JICF than in the impinging flow. The loss ratio of acetylene in the quenching process is 2.89% for the JICF and 1.45% for the impinging flow, showing that the impinging flow configuration is better and feasible for the quenching of POX of methane. 展开更多
关键词 Jet-in-cross-flow impinging flow CFD simulations Mixing behavior Quenching of partial oxidation process
下载PDF
Numerical studies on four-engine rocket exhaust plume impinging on flame deflectors with afterburning 被引量:2
2
作者 Zhi-tan Zhou Chang-fang Zhao +1 位作者 Chen-yu Lu Gui-gao Le 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1207-1216,共10页
This paper studies the four-engine liquid rocket flow field during the launching phase.Using threedimensional compressible Navier-Stokes equations and two-equation realizable k-epsilon turbulence model,an impact model... This paper studies the four-engine liquid rocket flow field during the launching phase.Using threedimensional compressible Navier-Stokes equations and two-equation realizable k-epsilon turbulence model,an impact model is established and flow fields of plume impinging on the two different shapes of flame deflectors,including wedge-shaped flame deflector and cone-shaped flame deflector,are calculated.The finite-rate chemical kinetics is used to track chemical reactions.The simulation results show that afterburning mainly occurs in the mixed layer.And the region of peak pressure occurs directly under the rocket nozzle,which is the result of the direct impact of exhaust plume.Compared with the wedgeshaped flame deflector,the cone-shaped flame deflector has great performance on guiding exhaust gas.The wedge-shaped and cone-shaped flame deflectors guide the supersonic exhaust plume away from the impingement point with two directions and circumferential direction,respectively.The maximum pressure and temperature on the wedge-shaped flame deflector surface are 37.2%and 9.9%higher than those for the cone-shaped flame deflector.The results provide engineering guidance and theoretical significance for design in flame deflector of the launch platforms. 展开更多
关键词 Four-engine rocket AFTERBURNING impinging flow field Different deflectors Numerical simulations
下载PDF
Heat Transfer during Spray Cooling of Flat Surfaces with Water at Large Reynolds Numbers
3
作者 Milan Hnizdil Martin Chabicovsky +1 位作者 Miroslav Raudensky Tae-Woo Lee 《Journal of Flow Control, Measurement & Visualization》 2016年第3期104-113,共11页
We present a new Nusselt number correlation for spray cooling at large Reynolds numbers and high surface temperatures for water sprays impinging perpendicularly onto a flat plate. A large set of experimental data on s... We present a new Nusselt number correlation for spray cooling at large Reynolds numbers and high surface temperatures for water sprays impinging perpendicularly onto a flat plate. A large set of experimental data on spray cooling of hot surfaces with water has been analyzed, including the water temperature effects. For large-scale cooling, such as in industrial processes, large number of injection parameters such as number, type, pressure, and angle of the spray injection has led to a multitude of correlations that are difficult for general and practical applications. However, by synthesizing a set of experimental data where all of the above parameters have been varied, we find that the Nusselt number and therefore the heat transfer coefficient can be cast accurately as a function of the Reynolds number. Water is widely used as the coolant during spray cooling, and has a specific phase change characteristic. At large Reynolds number (Re > 100,000) and surface temperature (Ts > 600°C) ranges, which are of interest in large-scale spray cooling, the effect of water temperature is quite significant as it affects the film boiling close to the surface. This effect also has been parameterized using experimental data. 展开更多
关键词 impinging flow Spray Cooling Heat Transfer MEASUREMENTS
下载PDF
LBE simulation of impinging stream inside a T-junction mixer
4
作者 XU WenKai ZHANG QingChen +1 位作者 GUI Nan ZHANG ZiWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第7期1038-1055,共18页
Lattice Boltzmann Equation(LBE) method is utilized to simulate impinging stream(IS) in a T-junction mixer using a TD2G9 model. It aims to investigate the influence of Reynolds number(Re), aspect ratio of outlet diamet... Lattice Boltzmann Equation(LBE) method is utilized to simulate impinging stream(IS) in a T-junction mixer using a TD2G9 model. It aims to investigate the influence of Reynolds number(Re), aspect ratio of outlet diameter to inlet diameter, ratio of opposite inlet velocities, and the thermal boundary conditions on flow, mixing and heat transfer characteristics. In particular, the vortex evolution, velocity distribution, mixing index and Nusselt number(Nu) distribution in the T-junction mixer are explored in details. Four types of vortices and flow regimes are observed. The instantaneous and time-averaged flow and thermal fields,including vortex structure, transition of flow regimes, streamline and the Nusselt number distribution are discussed. Distinct quantitative transitions, even for dramatic change, are observed near the critical Re. At a low or moderate aspect ratio, the symmetric coherent structure is observed in an unstable flow regime. At a larger aspect ratio, the flow in the T-mixer becomes turbulent and asymmetric. The unequal injections velocities of the nozzles impose significant influence on the flow structure,mixing and heat transfer in vertical tube. Using larger difference between the two inlet velocities can result in more obvious change in flow characteristics. Moreover, mixing index is found to be valid in evaluating the mixing degree under a sinusoidal inlet velocity. 展开更多
关键词 impinging flow lattice Boltzmann method T-JUNCTION heat transfer flow characteristics
原文传递
RANS simulations of the U and V grooves effect in the subcritical flow over four rotated circular cylinders
5
作者 ALONZO-GARCIA A. GUTIERREZ-TORRES C.del C. +3 位作者 JIMENEZ BERNAL J.A. MOLLINEDO-PONCE de LEON H.R. MARTINEZ-DELGADILLO S.A. BARBOSA-SALDANA J.G. 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第4期569-578,共10页
This paper presents a CFD study about the effect of the V and U grooves in the flow over four cylinders in diamond shape configuration at subcritical flow conditions(Re= 41 000). The k- ε Realizable turbulence mode... This paper presents a CFD study about the effect of the V and U grooves in the flow over four cylinders in diamond shape configuration at subcritical flow conditions(Re= 41 000). The k- ε Realizable turbulence model was implemented to fully structured hexahedral grids with near-wall refinements. Results showed that the numerical model was able to reproduce the impinging flow pattern and the repulsive forces present in the lateral cylinders of the smooth cylinder array. As a consequence of the flow alignment induced by the grooves, a jet-flow is formed between the lateral cylinders, which could cause an important vortex induced vibration effect especially in the rear cylinder. The magnitudes of the shear stresses at the valleys and peaks for the V grooved cylinders were lower than those of the U grooved cylinders, but the separation points were delayed due the U grooves presence. It is discussed the presence of a blowing effect caused by counter-rotating eddies located near the grooves peaks that cause a decrease of the shear stresses in the valleys, and promote them at the peaks. 展开更多
关键词 RANS model grooved cylinder four cylinders subcritical flow impinging flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部