TiO_(2) is a promising photocatalyst,but its practical use is restricted by its low catalytic efficiency caused by the large particle size and uneven size distribution,which arise from the limited contact area of the ...TiO_(2) is a promising photocatalyst,but its practical use is restricted by its low catalytic efficiency caused by the large particle size and uneven size distribution,which arise from the limited contact area of the liquid-liquid interface during synthesis.Impinging stream-rotating packed bed(IS-RPB)reactors,which are used for process intensification,overcome the mixing limitation of traditional stirred-tank reactors and provide a micromixing environment at the molecular scale for the two liquid phases,which can reduce the particle size and distribution range.Cu/N-TiO_(2) nanoparticles were prepared in an IS-RPB reactor by the one-step precipitation method using urea as the nitrogen source,titanyl sulfate as the titanium source,copper chloride as the copper source,and ammonium hydroxide as the precipitant.The particle size of the photocatalyst was about 11.40 nm with a narrow size distribution measured by scanning electron microscopy and transmission electron microscopy.X-ray photoelectron spectroscopy showed that N replaced some O and was uniformly dispersed in the TiO_(2) lattice as interstitial and substitutional N.Cu replaced some Ti and was present as Cu^(2+).The synergistic effects of these two elements formed a new impurity energy level and reduced the band gap energy of the TiO_(2) nanoparticles.The specific surface area of the Cu/N-TiO_(2) nanoparticles was 152.97 m^(2)/g.The effects of the main factors on the degradation rate were studied,and the removal efficiency reached 100%under the optimal operating conditions after 2 h ultraviolet irradiation.The electron paramagnetic resonance measurements showed that the superoxide radical played a main role in the degradation process,whereas the photogenerated holes and hydroxyl radicals had weak effects.展开更多
基金supported by the Natural Science Foundation of Shanxi Province (201901D211222)the Natural Science Foundation of the Shanxi Province of China (201901D111173)the Scientific and Technological Innovation Programs of Higher Education Institution in Shanxi (2019L0515)
文摘TiO_(2) is a promising photocatalyst,but its practical use is restricted by its low catalytic efficiency caused by the large particle size and uneven size distribution,which arise from the limited contact area of the liquid-liquid interface during synthesis.Impinging stream-rotating packed bed(IS-RPB)reactors,which are used for process intensification,overcome the mixing limitation of traditional stirred-tank reactors and provide a micromixing environment at the molecular scale for the two liquid phases,which can reduce the particle size and distribution range.Cu/N-TiO_(2) nanoparticles were prepared in an IS-RPB reactor by the one-step precipitation method using urea as the nitrogen source,titanyl sulfate as the titanium source,copper chloride as the copper source,and ammonium hydroxide as the precipitant.The particle size of the photocatalyst was about 11.40 nm with a narrow size distribution measured by scanning electron microscopy and transmission electron microscopy.X-ray photoelectron spectroscopy showed that N replaced some O and was uniformly dispersed in the TiO_(2) lattice as interstitial and substitutional N.Cu replaced some Ti and was present as Cu^(2+).The synergistic effects of these two elements formed a new impurity energy level and reduced the band gap energy of the TiO_(2) nanoparticles.The specific surface area of the Cu/N-TiO_(2) nanoparticles was 152.97 m^(2)/g.The effects of the main factors on the degradation rate were studied,and the removal efficiency reached 100%under the optimal operating conditions after 2 h ultraviolet irradiation.The electron paramagnetic resonance measurements showed that the superoxide radical played a main role in the degradation process,whereas the photogenerated holes and hydroxyl radicals had weak effects.