This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the c...This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.展开更多
In this paper we present a new representation of curve, named parametric curve with an implicit domain(PCID), which is a curve that exists in parametric form defined on an implicit domain. PCID provides a bridge betwe...In this paper we present a new representation of curve, named parametric curve with an implicit domain(PCID), which is a curve that exists in parametric form defined on an implicit domain. PCID provides a bridge between parametric curve and implicit curve because the conversion of parametric form or implicit form to PCID is very convenient and efficient. We propose a framework model for mapping given points to the implicit curve in a homeomorphic manner. The resulting map is continuous and does not overlap. This framework can be used for many applications such as compatible triangulation, image deformation and fisheye views. We also present some examples and experimental results to demonstrate the effectiveness of the framework of our proposed model.展开更多
文摘This paper presents a method for tracing a planar implicit curve f(x, y)=0 on a rectangular region based on continuation scheme. First, according to the starting track-point and the starting track-direction of the curve, make a new fimction F(x, y)=0 where the same curve withf(x, y)=0 is defined. Then we trace the curve between the two domains where F(x, y)〉0 and F(x, y)〈0 alternately, according to the two rules presented in this paper. Equal step size or adaptive step size can be used, when we trace the curve. An irregular planar implicit curve (such as the curve with large curvatures at some points on the curve), can be plotted if an adaptive step size is used. Moreover, this paper presents a scheme to search for the multiple points on the curve. Our method has the following advantages: (1) it can plot Co planar implicit curves; (2) it can plot the planar implicit curves with multiple points; (3) by the help of using the two rules, our method does not need to compute the tangent vector at the points on the curve, and directly searches for the direction of the tracing curve; (4) the tracing procedure costs only one of two evaluations of function f(x, y)=0 per moving step, while most existing similar methods cost more evaluations of the function.
基金supported by National Natural Science Foundation of China(Grant Nos.11031007,11171322,61222206 and 11371341)One Hundred Talent Project of the Chinese Academy of Sciencesthe Program for New Century Excellent Talents in University(Grant No.NCET-11-0881)
文摘In this paper we present a new representation of curve, named parametric curve with an implicit domain(PCID), which is a curve that exists in parametric form defined on an implicit domain. PCID provides a bridge between parametric curve and implicit curve because the conversion of parametric form or implicit form to PCID is very convenient and efficient. We propose a framework model for mapping given points to the implicit curve in a homeomorphic manner. The resulting map is continuous and does not overlap. This framework can be used for many applications such as compatible triangulation, image deformation and fisheye views. We also present some examples and experimental results to demonstrate the effectiveness of the framework of our proposed model.