Discourse relation classification is a fundamental task for discourse analysis,which is essential for understanding the structure and connection of texts.Implicit discourse relation classification aims to determine th...Discourse relation classification is a fundamental task for discourse analysis,which is essential for understanding the structure and connection of texts.Implicit discourse relation classification aims to determine the relationship between adjacent sentences and is very challenging because it lacks explicit discourse connectives as linguistic cues and sufficient annotated training data.In this paper,we propose a discriminative instance selection method to construct synthetic implicit discourse relation data from easy-to-collect explicit discourse relations.An expanded instance consists of an argument pair and its sense label.We introduce the argument pair type classification task,which aims to distinguish between implicit and explicit argument pairs and select the explicit argument pairs that are most similar to natural implicit argument pairs for data expansion.We also propose a simple label-smoothing technique to assign robust sense labels for the selected argument pairs.We evaluate our method on PDTB 2.0 and PDTB 3.0.The results show that our method can consistently improve the performance of the baseline model,and achieve competitive results with the state-of-the-art models.展开更多
A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this p...A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this paper, we propose a cross-lingual implicit DRR framework that exploits an available English corpus for the Chinese DRR task. We use machine translation to generate Chinese instances from a labeled English discourse corpus. In this way, each instance has two independent views: Chinese and English views. Then we train two classifiers in Chinese and English in a co-training way, which exploits unlabeled Chinese data to implement better implicit DRR for Chinese. Experimental results demonstrate the effectiveness of our method.展开更多
We study implicit discourse relation detection,which is one of the most challenging tasks in the field of discourse analysis.We specialize in ambiguous implicit discourse relation,which is an imperceptible linguistic ...We study implicit discourse relation detection,which is one of the most challenging tasks in the field of discourse analysis.We specialize in ambiguous implicit discourse relation,which is an imperceptible linguistic phenomenon and therefore difficult to identify and eliminate.In this paper,we first create a novel task named implicit discourse relation disambiguation(IDRD).Second,we propose a focus-sensitive relation disambiguation model that affirms a truly-correct relation when it is triggered by focal sentence constituents.In addition,we specifically develop a topicdriven focus identification method and a relation search system(RSS)to support the relation disambiguation.Finally,we improve current relation detection systems by using the disambiguation model.Experiments on the penn discourse treebank(PDTB)show promising improvements.展开更多
基金National Natural Science Foundation of China(Grant Nos.62376166,62306188,61876113)National Key R&D Program of China(No.2022YFC3303504).
文摘Discourse relation classification is a fundamental task for discourse analysis,which is essential for understanding the structure and connection of texts.Implicit discourse relation classification aims to determine the relationship between adjacent sentences and is very challenging because it lacks explicit discourse connectives as linguistic cues and sufficient annotated training data.In this paper,we propose a discriminative instance selection method to construct synthetic implicit discourse relation data from easy-to-collect explicit discourse relations.An expanded instance consists of an argument pair and its sense label.We introduce the argument pair type classification task,which aims to distinguish between implicit and explicit argument pairs and select the explicit argument pairs that are most similar to natural implicit argument pairs for data expansion.We also propose a simple label-smoothing technique to assign robust sense labels for the selected argument pairs.We evaluate our method on PDTB 2.0 and PDTB 3.0.The results show that our method can consistently improve the performance of the baseline model,and achieve competitive results with the state-of-the-art models.
基金Project supported by the National Natural Science Foundation of China(No.61672440)the Natural Science Foundation of Fujian Province,China(No.2016J05161)+2 种基金the Research Fund of the State Key Laboratory for Novel Software Technology in Nanjing University,China(No.KFKT2015B11)the Scientific Research Project of the National Language Committee of China(No.YB135-49)the Fundamental Research Funds for the Central Universities,China(No.ZK1024)
文摘A lack of labeled corpora obstructs the research progress on implicit discourse relation recognition (DRR) for Chinese, while there are some available discourse corpora in other languages, such as English. In this paper, we propose a cross-lingual implicit DRR framework that exploits an available English corpus for the Chinese DRR task. We use machine translation to generate Chinese instances from a labeled English discourse corpus. In this way, each instance has two independent views: Chinese and English views. Then we train two classifiers in Chinese and English in a co-training way, which exploits unlabeled Chinese data to implement better implicit DRR for Chinese. Experimental results demonstrate the effectiveness of our method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61672368,61373097,61672367,61331011)the Research Foundation of the Ministry of Education and China Mobile(MCM20150602)Natural Science Foundation of Jiangsu(BK20151222).
文摘We study implicit discourse relation detection,which is one of the most challenging tasks in the field of discourse analysis.We specialize in ambiguous implicit discourse relation,which is an imperceptible linguistic phenomenon and therefore difficult to identify and eliminate.In this paper,we first create a novel task named implicit discourse relation disambiguation(IDRD).Second,we propose a focus-sensitive relation disambiguation model that affirms a truly-correct relation when it is triggered by focal sentence constituents.In addition,we specifically develop a topicdriven focus identification method and a relation search system(RSS)to support the relation disambiguation.Finally,we improve current relation detection systems by using the disambiguation model.Experiments on the penn discourse treebank(PDTB)show promising improvements.