The best finite-difference scheme for the Helmholtz equation is suggested. A method of solving obtained finite-difference scheme is developed. The efficiency and accuracy of method were tested on several examples.
A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an o...A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.展开更多
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy...The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
This paper proposed several new types of finite-difference methods for the shallow water equation in absolute coordinate system and put forward an effective two-step predictor-corrector method, a compact and iterative...This paper proposed several new types of finite-difference methods for the shallow water equation in absolute coordinate system and put forward an effective two-step predictor-corrector method, a compact and iterative algorithm for five diagonal matrix. Then the iterative method was used for a multi-grid procedure for shallow water equation. A t last, an initial-boundary value problem was considered, and the numerical results show that the linear sinusoidal wave would successively evolve into conoidal wave.展开更多
The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part o...The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.展开更多
In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(...In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.展开更多
Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order tim...Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.展开更多
A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segme...A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.展开更多
In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two ...In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.展开更多
Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly im...Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.展开更多
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-differ...Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.展开更多
We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equati...We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.展开更多
Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Im...Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws.展开更多
Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval ...Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval can lead to dispersion errors and numerical instability.In the FD scheme,the key factor in determining both dispersion errors and stability is the selection of the FD weights.Thus,How to obtain appropriate FD weights to guarantee a stable numerical modeling process with minimum dispersion error is critical.The FD weights computation strategies can be classified into three types based on different computational ideologies,window function strategy,optimization strategy,and Taylor expansion strategy.In this paper,we provide a comprehensive overview of these three strategies by presenting their fundamental theories.We conduct a set of comparative analyses of their strengths and weaknesses through various analysis tests and numerical modelings.According to these comparisons,we provide two potential research directions of this field:Firstly,the development of a computational strategy for FD weights that enhances stability;Secondly,obtaining FD weights that exhibit a wide bandwidth while minimizing dispersion errors.展开更多
针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根...针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。展开更多
The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be ...The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be adopted since explicit schemes may bring about a great increase in computation quantity according to the Courant-FrledrichsLewy condition. Whereas the adoption of implicit schemes is difficult to be realized because of the existence of two partial derivatives of surface elevations with respect to variables of alternative direction coordinates in each momentum equation in non-rectangular coordinates. With an aim to design an implicit scheme in non-reetangular ccordinates in the present paper, new momentum equations with the contravariant components of velocity vector are derived based on the shallow water dynamic equations in generalized curvilinear coordinates. In each equation, the coefficients before the two detivatives of surface elevations have different orders of magnitude, i. e., the derivative with the larger ceefficient rnay play a more important role than that with the smaller one. With this advantage, the ADI scheme can then be easily employed to improve the numerical stability and decrease the calculating quantity. The calculation in a harbour and a channel in Macau nearshore area shows that the implicit model is effective in calculating current fields in small size areas.展开更多
Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by ...Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.展开更多
In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local trunc...In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.展开更多
文摘The best finite-difference scheme for the Helmholtz equation is suggested. A method of solving obtained finite-difference scheme is developed. The efficiency and accuracy of method were tested on several examples.
基金Project supported by the National Natural Science Foundation of China(Nos.11601517,11502296,61772542,and 61561146395)the Basic Research Foundation of National University of Defense Technology(No.ZDYYJ-CYJ20140101)
文摘A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.
基金supported by the National Natural Science Foundation of China(Grant Nos.60931002 and 61101064)the Universities Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2011A002 and 1108085J01)
文摘The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
文摘This paper proposed several new types of finite-difference methods for the shallow water equation in absolute coordinate system and put forward an effective two-step predictor-corrector method, a compact and iterative algorithm for five diagonal matrix. Then the iterative method was used for a multi-grid procedure for shallow water equation. A t last, an initial-boundary value problem was considered, and the numerical results show that the linear sinusoidal wave would successively evolve into conoidal wave.
文摘The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.
文摘In this paper,a implicit difference scheme is proposed for solving the equation of one_dimension parabolic type by undetermined paameters.The stability condition is r=αΔt/Δx 2 1/2 and the truncation error is o(Δt 4+Δx 4) It can be easily solved by double sweeping method.
基金Supported by the Discipline Construction and Teaching Research Fund of LUTcte(20140089)
文摘Time fractional diffusion equation is usually used to describe the problems involving non-Markovian random walks. This kind of equation is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α∈(0, 1). In this paper, an implicit finite difference scheme for solving the time fractional diffusion equation with source term is presented and analyzed, where the fractional derivative is described in the Caputo sense. Stability and convergence of this scheme are rigorously established by a Fourier analysis. And using numerical experiments illustrates the accuracy and effectiveness of the scheme mentioned in this paper.
基金Project supported by the National Natural Science Foundation of China(No.10671113)the Natural Science Foundation of Shandong Province of China(No.Y2003A04)
文摘A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
文摘In this paper, we are going to derive four numerical methods for solving the Modified Kortweg-de Vries (MKdV) equation using fourth Pade approximation for space direction and Crank Nicolson in the time direction. Two nonlinear schemes and two linearized schemes are presented. All resulting schemes will be analyzed for accuracy and stability. The exact solution and the conserved quantities are used to highlight the efficiency and the robustness of the proposed schemes. Interaction of two and three solitons will be also conducted. The numerical results show that the interaction behavior is elastic and the conserved quantities are conserved exactly, and this is a good indication of the reliability of the schemes which we derived. A comparison with some existing is presented as well.
文摘Three dimensional Euler equations are solved in the finite volume form with van Leer's flux vector splitting technique. Block matrix is inverted by Gauss-Seidel iteration in two dimensional plane while strongly implicit alternating sweeping is implemented in the direction of the third dimension. Very rapid convergence rate is obtained with CFL number reaching the order of 100. The memory resources can be greatly saved too. It is verified that the reflection boundary condition can not be used with flux vector splitting since it will produce too large numerical dissipation. The computed flow fields agree well with experimental results. Only one or two grid points are there within the shock transition zone.
基金supported by the National Basic Research Program of China (No. 2013CB228604)the National Science and Technology Major Project (No. 2011ZX05030-004-002,2011ZX05019-003)the National Natural Science Foundation (No. 41004050)
文摘Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However,the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap,combined with variable grid-size and time-step,this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.
文摘We study numerical methods for level set like equations arising in image processing and curve evolution problems. Semi-implicit finite volume-element type schemes are constructed for the general level set like equation (image selective smoothing model) given by Alvarez et al. (Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal., 1992, 29: 845-866). Through the reasonable semi-implicit discretization in time and co-volume method for space approximation, we give finite volume schemes, unconditionally stable in L∞ and W1'2 (W1'1) sense in isotropic (anisotropic) diffu- sion domain.
基金MIUR(Ministry of University and Research)PRIN2017 project number 2017KKJP4XProgetto di Ateneo Sapienza,number RM120172B41DBF3A.
文摘Many interesting applications of hyperbolic systems of equations are stiff,and require the time step to satisfy restrictive stability conditions.One way to avoid small time steps is to use implicit time integration.Implicit integration is quite straightforward for first-order schemes.High order schemes instead also need to control spurious oscillations,which requires limiting in space and time also in the linear case.We propose a framework to simplify considerably the application of high order non-oscillatory schemes through the introduction of a low order implicit predictor,which is used both to set up the nonlinear weights of a standard high order space reconstruction,and to achieve limiting in time.In this preliminary work,we concentrate on the case of a third-order scheme,based on diagonally implicit Runge Kutta(DIRK)integration in time and central weighted essentially non-oscillatory(CWENO)reconstruction in space.The numerical tests involve linear and nonlinear scalar conservation laws.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2021QNLM020001)the Major Scientific and Technological Projects of Shandong Energy Group (No.SNKJ2022A06-R23)+2 种基金the Funds of Creative Research Groups of China (No.41821002)National Natural Science Foundation of China Outstanding Youth Science Fund Project (Overseas) (No.ZX20230152)the Major Scientific and Technological Projects of CNPC (No.ZD2019-183-003)。
文摘Finite-difference(FD)method is the most extensively employed numerical modeling technique.Nevertheless,when using the FD method to simulate the seismic wave propagation,the large spatial or temporal sampling interval can lead to dispersion errors and numerical instability.In the FD scheme,the key factor in determining both dispersion errors and stability is the selection of the FD weights.Thus,How to obtain appropriate FD weights to guarantee a stable numerical modeling process with minimum dispersion error is critical.The FD weights computation strategies can be classified into three types based on different computational ideologies,window function strategy,optimization strategy,and Taylor expansion strategy.In this paper,we provide a comprehensive overview of these three strategies by presenting their fundamental theories.We conduct a set of comparative analyses of their strengths and weaknesses through various analysis tests and numerical modelings.According to these comparisons,we provide two potential research directions of this field:Firstly,the development of a computational strategy for FD weights that enhances stability;Secondly,obtaining FD weights that exhibit a wide bandwidth while minimizing dispersion errors.
文摘针对COB-LED(Chip on Board-Light Emitting Diode)散热问题,文中基于二维热传导方程建立了一个可快速计算COB-LED散热器表面热分布的数学模型。为了便于模型求解,采用有限差分法求解该数学模型并选择交替方向隐格式作为其差分格式。根据模型中的边界条件和初始条件设计COB-LED常温点亮实验,并基于ANSYS有限元分析软件进行仿真分析。通过比较求解结果、仿真结果和实验结果验证该数学模型的合理性。结果表明,求解结果与实验结果中最高温度相对误差约23.57%,且两者的温度变化趋势一致。求解结果与仿真结果中最高温度相对误差约34.84%,且温度分布较为接近,证明了该数学模型的合理性与正确性。
文摘The key problem in the computation of fluid dynamics using fine boundary-fitted grids is how to improve the numerical stability and decrease the calculating quantity. To solve this problem, implicit schemes should be adopted since explicit schemes may bring about a great increase in computation quantity according to the Courant-FrledrichsLewy condition. Whereas the adoption of implicit schemes is difficult to be realized because of the existence of two partial derivatives of surface elevations with respect to variables of alternative direction coordinates in each momentum equation in non-rectangular coordinates. With an aim to design an implicit scheme in non-reetangular ccordinates in the present paper, new momentum equations with the contravariant components of velocity vector are derived based on the shallow water dynamic equations in generalized curvilinear coordinates. In each equation, the coefficients before the two detivatives of surface elevations have different orders of magnitude, i. e., the derivative with the larger ceefficient rnay play a more important role than that with the smaller one. With this advantage, the ADI scheme can then be easily employed to improve the numerical stability and decrease the calculating quantity. The calculation in a harbour and a channel in Macau nearshore area shows that the implicit model is effective in calculating current fields in small size areas.
文摘Strong convergence theorems for approximation of common fixed points of asymptotically Ф-quasi-pseudocontractive mappings and asymptotically C-strictly- pseudocontractive mappings are proved in real Banach spaces by using a new composite implicit iteration scheme with errors. The results presented in this paper extend and improve the main results of Sun, Gu and Osilike published on J. Math. Anal. Appl.
文摘In this paper, an explicit three_level symmetrical differencing scheme with parameters for solving parabolic partial differential equation of three_dimension will be considered. The stability condition and local truncation error for the scheme are r<1/2 and O( Δ t 2+ Δ x 4+ Δ y 4+ Δ z 4) ,respectively.