We prove a global version of the implicit function theorem under a special condition and apply this result to the proof of a modified Hyers-Ulam-Rassias stability of exact differential equations of the form, g(x, y)...We prove a global version of the implicit function theorem under a special condition and apply this result to the proof of a modified Hyers-Ulam-Rassias stability of exact differential equations of the form, g(x, y) + h(x, y)y' =0.展开更多
This paper is considered the existence of positive solutions for a class of generalized quasilinear Schrödinger equations with nonlocal term in R<sup>N</sup> which have appeared from plasma physic...This paper is considered the existence of positive solutions for a class of generalized quasilinear Schrödinger equations with nonlocal term in R<sup>N</sup> which have appeared from plasma physics, as well as high-power ultrashort laser in matter. We use a charge of variables and obtain the existence of solutions via minimization argument.展开更多
In this paper,we study the continuous dependence of eigenvalue of Sturm-Liouville differential operators on the boundary condition by using of implicit function theorem.The work not only provides a new and elementary ...In this paper,we study the continuous dependence of eigenvalue of Sturm-Liouville differential operators on the boundary condition by using of implicit function theorem.The work not only provides a new and elementary proof of the above results,but also explicitly presents the expressions for derivatives of the n-th eigenvalue with respect to given parameters.Further-more,we obtain the new results of the position and number of the generated double eigenvalues under the real coupled boundary condition.展开更多
We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k...We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.展开更多
Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N...Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly.展开更多
文摘We prove a global version of the implicit function theorem under a special condition and apply this result to the proof of a modified Hyers-Ulam-Rassias stability of exact differential equations of the form, g(x, y) + h(x, y)y' =0.
文摘This paper is considered the existence of positive solutions for a class of generalized quasilinear Schrödinger equations with nonlocal term in R<sup>N</sup> which have appeared from plasma physics, as well as high-power ultrashort laser in matter. We use a charge of variables and obtain the existence of solutions via minimization argument.
基金supported in part by the National Natural Science Foundation of China(Grant No.11571212).
文摘In this paper,we study the continuous dependence of eigenvalue of Sturm-Liouville differential operators on the boundary condition by using of implicit function theorem.The work not only provides a new and elementary proof of the above results,but also explicitly presents the expressions for derivatives of the n-th eigenvalue with respect to given parameters.Further-more,we obtain the new results of the position and number of the generated double eigenvalues under the real coupled boundary condition.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171339 and 11171261)National Center for Mathematics and Interdisciplinary Sciences
文摘We give a classification of second-order polynomial solutions for the homogeneous k-Hessian equation σ_k[u] = 0. There are only two classes of polynomial solutions: One is convex polynomial; another one must not be(k + 1)-convex, and in the second case, the k-Hessian equations are uniformly elliptic with respect to that solution. Based on this classification, we obtain the existence of C∞local solution for nonhomogeneous term f without sign assumptions.
基金the National Natural Science Foundation of China(No.10571174,10631030)Chinese Academy oF Sciences grant KJCX3-SYW-S03.
文摘Consider the following Neumann problem d△u- u + k(x)u^p = 0 and u 〉 0 in B1, δu/δv =0 on OB1,where d 〉 0, B1 is the unit ball in R^N, k(x) = k(|x|) ≠ 0 is nonnegative and in C(-↑B1), 1 〈 p 〈 N+2/N-2 with N≥ 3. It was shown in [2] that, for any d 〉 0, problem (*) has no nonconstant radially symmetric least energy solution if k(x) ≡ 1. By an implicit function theorem we prove that there is d0 〉 0 such that (*) has a unique radially symmetric least energy solution if d 〉 d0, this solution is constant if k(x) ≡ 1 and nonconstant if k(x) ≠ 1. In particular, for k(x) ≡ 1, do can be expressed explicitly.