针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳...针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性.展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
文摘针对非线性Benjamin-Bona-Mahony (BBM)方程,在时间上构造了2阶的Backward differential formula (BDF2)时间离散格式,在空间上采用双线性单元和零阶RT单元的混合有限元方法,研究了其超收敛性质.首先,利用变换技巧给出关于逼近方程的稳定性.其次,利用逼近解的有界性得到关于其原始变量u的一个超逼近结果,进而得到其中间变量q的超逼近结果.最后利用一个算例验证理论结果的正确性.
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.