The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed...The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.展开更多
In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been sho...In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.展开更多
BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by...BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.展开更多
Objective:To investigate the expression of Runx3 and TGF-β_1 protein in the colon from rats with irritable bowel syndrome(IBS).Methods:Rat model for IBS was established by intracolonic instillation with acetic acid a...Objective:To investigate the expression of Runx3 and TGF-β_1 protein in the colon from rats with irritable bowel syndrome(IBS).Methods:Rat model for IBS was established by intracolonic instillation with acetic acid and restraint stress methods,which was confirmed by determinating the visceral sensitivity of the animals,including abdominal withdrawal reflex (AWR) score and the electronic behavior of the abdomen wall.The rats were randomly assigned into three groups:IBS,group(restraint stress,n=25);IBS_2 group(both instillation with acetic acid and restraint stress,n=25) and Control group(n=16).The colonic tissue samples were collected for histological study and the expression of Runx3 and TGF-β_1 proteins were detected by immunohistochemistry.Meanwhile,the relationship of these two proteins was calculated. Results:Visceral hypersensitivity(AWR and abdominal electrical activity) was significantly enhanced in IBS,and IBS_2 groups than other groups.The colon tissue in all groups did not show any signs of inflammation.Furthermore,the expression of Runx3 and TGF-β_1 protein in the colon from all groups show no significant difference(P>0.05),with no remarkable relevancy between each other(P>0.05).Conclusions:The rat model for IBS was successfully established. We did not find any significant changes in the expression of Runx3 and TGF-β_1 protein in the colon tissue from IBS rats,suggesting that the quantitative changes may be not the way by which Runx3 and TGF-β_1 protein play their roles in IBS.The accurate roles of Runx3 and TGF-β_1 proteins in the pathogenesis of IBS remains to be further studied.展开更多
Fusarium graminearum,the primary pathogenic fungus responsible for Fusarium head blight(FHB)in wheat,secretes abundant chemical compounds that interact with host plants.In this study,a secreted protein FgHrip1,isolate...Fusarium graminearum,the primary pathogenic fungus responsible for Fusarium head blight(FHB)in wheat,secretes abundant chemical compounds that interact with host plants.In this study,a secreted protein FgHrip1,isolated from the culture filtrate of F.graminearum,was found to induce typical cell death in tobacco.The FgHrip1 gene was then cloned and expressed in Escherichia coli.Further bioassay analysis showed that the recombinant FgHrip1 induced early defense induction events,such as reactive oxygen species(ROS)production,callose deposition,and up-regulation of defense-related genes in tobacco.Furthermore,FgHrip1 significantly enhanced immunity in tobacco seedlings against Pseudomonas syringae pv.tabaci 6605(Pst.6605)and tobacco mosaic virus(TMV).FgHrip1-treated wheat spikes also exhibited defense-related transcript accumulation and developed immunity against FHB infection.Whereas the expression of FgHrip1 was induced during the infection process,the deletion of the gene impaired the virulence of F.graminearum.Our results suggest that FgHrip1triggers immunity and induces disease resistance in tobacco and wheat,thereby providing new insight into strategy for biocontrol of FHB.展开更多
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and test...Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.展开更多
The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt ...The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt cotton breeding and high-yield and-efficiency cotton cultivation.This study was conducted using Bt cotton cultivar‘Sikang 3'during the 2020 and 2021 growing seasons at Yangzhou University Farm,Yangzhou,Jiangsu Province,China.Potted cotton plants were exposed to high temperature and drought stress,and sprayed with either 20 mg L^(-1)DPC or water(CK).Seven days after treatment,the Cry1Ac protein content,α-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content were measured,and transcriptome sequencing was performed.DESeq was used for differential gene analysis.Under the DPC treatment,the Cry1Ac protein content increased by 4.7-11.9% compared to CK.Theα-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content all increased.Transcriptome analysis revealed 7,542 upregulated genes and 10,449 downregulated genes for DPC vs.CK.Gene ontology(GO)and Kyoto Encyclopedia of Gene and Genomes(KEGG)analyses showed that the differentially expressed genes were mainly involved in biological processes,such as carbon and amino acid metabolism.For example,genes encoding 6-phosphofructokinase,pyruvate kinase,glutamic pyruvate transaminase,pyruvate dehydrogenase,citrate synthase,isocitrate dehydrogenase,2-oxoglutarate dehydrogenase,glutamate synthase,1-pyrroline-5-carboxylate dehydrogenase,glutamic oxaloacetic transaminase,amino-acid N-acetyltransferase,and acetylornithine deacetylase were all significantly upregulated.The DPC treatment increased pyruvate,α-ketoglutarate,and oxaloacetate by increasing the operational rate of the glycolytic pathway of the citric acid cycle.It also significantly upregulated the genes encoding glutamate synthase,pyrrolidine-5-carboxylic acid dehydrogenase,glutamate oxaloacetate transaminase,and N-acetylglutamate synthetase,while it downregulated the genes encoding glutamine synthetase.Therefore,the synthesis of aspartic acid,glutamic acid,pyruvate,and arginine increased after treatment with DPC,and the Cry1Ac protein content was increased by regulating carbon and amino acid metabolism.展开更多
Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advance...Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.展开更多
Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effe...Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effects,drug resistance,and limited improvements in survival and quality of life.Therefore,it is crucial to discover and develop new medications targeting GC that are highly effective and have minimal toxicity.In previous studies,the total terpene extract from the stem of Celastrus orbiculatus demonstrated anti-GC activity;however,the specific mechanism was unclear.Our research utilising coimmunoprecipitation-mass spectrometry(Co-IP-MS),polypyrimidine tract binding protein 1(ptbp1)clustered regularly interspaced short palindromic repeat-associated protein 9(Cas9)-knockout(KO)mouse model,tissue microarray,and functional experiments suggests that alpha actinin-4(ACTN4)could be a significant biomarker of GC.PTBP1 influences actin cytoskeleton restructuring in GC cells by interacting with ACTN4.Celastrus orbiculatus stem extract(COE)may directly target ACTN4 and affect the interaction between PTBP1 and ACTN4,thereby exerting anti-GC effects.展开更多
Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the...Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the pepper industry by affecting the planting period,growth conditions,and disease susceptibility.The gene CaABI3/VP1-1 could improve pepper waterlogging tolerance.In order to explore the upstream regulatory mechanism of CaABI3/VP1-1,a high-quality standardized yeast hybrid library was successfully constructed for yeast one-,two-,and threehybrid screening using pepper‘ZHC2’as the experimental material,with a library recombinant efficiency of up to 100%.The length of inserted fragments varied from 650 to 5000 bp,the library titer was 5.18×10^(6)colony-forming units(CFU)·mL-1,and the library capacity was 1.04×10^(7)CFU of cDNA inserts.The recombinant bait plasmid was used to successfully identify 78 different proteins through the yeast one-hybrid system,including one transcription factor within the ethylene-responsive factor family and the other within the growth-regulating factor family.The interaction happened between LOC124895848 and CaABI3/VP1-1 promoter by point-to-point yeast one-hybrid experiment.The expression level of the 12 selected protein-coding genes was then evaluated by quantitative real-time polymerase chain reaction.Results indicated the protein coding genes showed different responses to waterlogging stress and that the activity of the CaABI3/VP1-1 promoter could be inhibited or activated by up-regulating or down-regulating gene expression,respectively.The identification of these proteins interacting with the promoter provides a new perspective for understanding the gene regulatory network of hot pepper operating under waterlogging stress and provides theoretical support for further analysis of the complex regulatory relationship between transcription factors and promoters.展开更多
Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates ...Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.展开更多
Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editor...Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editorial,we review and comment on an article by Wang et al published in 2024.This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA,focusing on its protective effects and uncovering the underlying mechanisms.Cyclophosphamide(CTX)administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells,thereby establishing an AA model.Compared with the AA group,ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors.Mechanistically,treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway.Thus,this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression,primarily through its influence on the mitogen activated protein kinase signaling pathway.We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article.展开更多
Objective:To investigate the role of Runx3 protein and TGF-β_1 in the pathogenesis of irritable bowel syndrome(IBS),as well as the correlation of these two proteins.Methods:Colonic tissue was collected from patients ...Objective:To investigate the role of Runx3 protein and TGF-β_1 in the pathogenesis of irritable bowel syndrome(IBS),as well as the correlation of these two proteins.Methods:Colonic tissue was collected from patients with IBS and normal persons.The colonic expression of Runx3 protein and TGF-β_1 was detected with immunohislochemistry method.Semi-quantitative analysis was used to evaluate the staining degree of these two proteins.Results:Compared with their counterparts,patients with IBS did not show any changes in the colonic expression of Runx3 protein and TGF-β_1(P>0.05).Interestingly,there was a significant correlation between Runx3 protein and TGF-β_1 in patients with IBS(P<0.05).Conclusions:The role of Runx3 protein and TGF-β_1 in the pathogenesis of IBS remains to be further studied.展开更多
基金supported by the National Natural Science Foundation of China,Nos.91849115 and U1904207(to YX),81974211 and 82171247(to CS)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences,No.2020-PT310-01(to YX).
文摘The E3 ubiquitin ligase,carboxyl terminus of heat shock protein 70(Hsp70)interacting protein(CHIP),also functions as a co-chaperone and plays a crucial role in the protein quality control system.In this study,we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer’s disease.We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain.CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests,reduced amyloid-βplaques,and decreased the expression of both amyloid-βand phosphorylated tau.CHIP also alleviated the concentration of microglia and astrocytes around plaques.In APP/PS1 mice of a younger age,CHIP overexpression promoted an increase in ADAM10 expression and inhibitedβ-site APP cleaving enzyme 1,insulin degrading enzyme,and neprilysin expression.Levels of HSP70 and HSP40,which have functional relevance to CHIP,were also increased.Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated,which may also reflect a potential mechanism for the neuroprotective effect of CHIP.Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice.Indeed,overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer’s disease.
基金supported by the National Natural Science Foundation of China,No.82071418the Natural Science Foundation of Fujian Province,No.2020J01612 (both to EH)。
文摘In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1(PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.e B-GFAP-sh PTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-sh PTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.
基金Supported by the National Natural Science Foundation of China,No.81471094 and No.82202743.
文摘BACKGROUND Recently,type 2 diabetic osteoporosis(T2DOP)has become a research hotspot for the complications of diabetes,but the specific mechanism of its occurrence and development remains unknown.Ferroptosis caused by iron overload is con-sidered an important cause of T2DOP.Polycytosine RNA-binding protein 1(PCBP1),an iron ion chaperone,is considered a protector of ferroptosis.AIM To investigate the existence of ferroptosis and specific role of PCBP1 in the development of type 2 diabetes.METHODS A cell counting kit-8 assay was used to detect changes in osteoblast viability under high glucose(HG)and/or ferroptosis inhibitors at different concentrations and times.Transmission electron microscopy was used to examine the morpho-logical changes in the mitochondria of osteoblasts under HG,and western blotting was used to detect the expression levels of PCBP1,ferritin,and the ferroptosis-related protein glutathione peroxidase 4(GPX4).A lentivirus silenced and overex-pressed PCBP1.Western blotting was used to detect the expression levels of the osteoblast functional proteins osteoprotegerin(OPG)and osteocalcin(OCN),whereas flow cytometry was used to detect changes in reactive oxygen species(ROS)levels in each group.RESULTS Under HG,the viability of osteoblasts was considerably decreased,the number of mitochondria undergoing atrophy was considerably increased,PCBP1 and ferritin expression levels were increased,and GPX4 expression was decreased.Western blotting results demonstrated that infection with lentivirus overexpressing PCBP1,increased the expression levels of ferritin,GPX4,OPG,and OCN,compared with the HG group.Flow cytometry results showed a reduction in ROS,and an opposite result was obtained after silencing PCBP1.CONCLUSION PCBP1 may protect osteoblasts and reduce the harm caused by ferroptosis by promoting ferritin expression under a HG environment.Moreover,PCBP1 may be a potential therapeutic target for T2DOP.
基金Supported by Natural Science Fundation of Hainan Province 2008(No 30855)
文摘Objective:To investigate the expression of Runx3 and TGF-β_1 protein in the colon from rats with irritable bowel syndrome(IBS).Methods:Rat model for IBS was established by intracolonic instillation with acetic acid and restraint stress methods,which was confirmed by determinating the visceral sensitivity of the animals,including abdominal withdrawal reflex (AWR) score and the electronic behavior of the abdomen wall.The rats were randomly assigned into three groups:IBS,group(restraint stress,n=25);IBS_2 group(both instillation with acetic acid and restraint stress,n=25) and Control group(n=16).The colonic tissue samples were collected for histological study and the expression of Runx3 and TGF-β_1 proteins were detected by immunohistochemistry.Meanwhile,the relationship of these two proteins was calculated. Results:Visceral hypersensitivity(AWR and abdominal electrical activity) was significantly enhanced in IBS,and IBS_2 groups than other groups.The colon tissue in all groups did not show any signs of inflammation.Furthermore,the expression of Runx3 and TGF-β_1 protein in the colon from all groups show no significant difference(P>0.05),with no remarkable relevancy between each other(P>0.05).Conclusions:The rat model for IBS was successfully established. We did not find any significant changes in the expression of Runx3 and TGF-β_1 protein in the colon tissue from IBS rats,suggesting that the quantitative changes may be not the way by which Runx3 and TGF-β_1 protein play their roles in IBS.The accurate roles of Runx3 and TGF-β_1 proteins in the pathogenesis of IBS remains to be further studied.
基金financed by the National Key Research and Development Program of China(2017YFD0200900)。
文摘Fusarium graminearum,the primary pathogenic fungus responsible for Fusarium head blight(FHB)in wheat,secretes abundant chemical compounds that interact with host plants.In this study,a secreted protein FgHrip1,isolated from the culture filtrate of F.graminearum,was found to induce typical cell death in tobacco.The FgHrip1 gene was then cloned and expressed in Escherichia coli.Further bioassay analysis showed that the recombinant FgHrip1 induced early defense induction events,such as reactive oxygen species(ROS)production,callose deposition,and up-regulation of defense-related genes in tobacco.Furthermore,FgHrip1 significantly enhanced immunity in tobacco seedlings against Pseudomonas syringae pv.tabaci 6605(Pst.6605)and tobacco mosaic virus(TMV).FgHrip1-treated wheat spikes also exhibited defense-related transcript accumulation and developed immunity against FHB infection.Whereas the expression of FgHrip1 was induced during the infection process,the deletion of the gene impaired the virulence of F.graminearum.Our results suggest that FgHrip1triggers immunity and induces disease resistance in tobacco and wheat,thereby providing new insight into strategy for biocontrol of FHB.
基金supported by the priority academic program development of Jiangsu Higher education institutionsthe National Natural Science Foundation of China [31801538, 32072200]China Postdoctoral Science Foundation[2019M651747].
文摘Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans).Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test.Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism.Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.
基金supported by the National Natural Science Foundation of China(31901462)the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(22KJA210005)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD)the Brand Professional Construction Program of Jiangsu Higher Education Institutions,China。
文摘The effects of mepiquat chloride(DPC)on the Cry1Ac protein content in Bacillus thuringiensis(Bt)cotton boll shells under high temperature and drought stress were investigated to provide a theoretical reference for Bt cotton breeding and high-yield and-efficiency cotton cultivation.This study was conducted using Bt cotton cultivar‘Sikang 3'during the 2020 and 2021 growing seasons at Yangzhou University Farm,Yangzhou,Jiangsu Province,China.Potted cotton plants were exposed to high temperature and drought stress,and sprayed with either 20 mg L^(-1)DPC or water(CK).Seven days after treatment,the Cry1Ac protein content,α-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content were measured,and transcriptome sequencing was performed.DESeq was used for differential gene analysis.Under the DPC treatment,the Cry1Ac protein content increased by 4.7-11.9% compared to CK.Theα-ketoglutarate content,pyruvic acid content,glutamate synthase activity,glutamic oxaloacetic transaminase activity,soluble protein content,and amino acid content all increased.Transcriptome analysis revealed 7,542 upregulated genes and 10,449 downregulated genes for DPC vs.CK.Gene ontology(GO)and Kyoto Encyclopedia of Gene and Genomes(KEGG)analyses showed that the differentially expressed genes were mainly involved in biological processes,such as carbon and amino acid metabolism.For example,genes encoding 6-phosphofructokinase,pyruvate kinase,glutamic pyruvate transaminase,pyruvate dehydrogenase,citrate synthase,isocitrate dehydrogenase,2-oxoglutarate dehydrogenase,glutamate synthase,1-pyrroline-5-carboxylate dehydrogenase,glutamic oxaloacetic transaminase,amino-acid N-acetyltransferase,and acetylornithine deacetylase were all significantly upregulated.The DPC treatment increased pyruvate,α-ketoglutarate,and oxaloacetate by increasing the operational rate of the glycolytic pathway of the citric acid cycle.It also significantly upregulated the genes encoding glutamate synthase,pyrrolidine-5-carboxylic acid dehydrogenase,glutamate oxaloacetate transaminase,and N-acetylglutamate synthetase,while it downregulated the genes encoding glutamine synthetase.Therefore,the synthesis of aspartic acid,glutamic acid,pyruvate,and arginine increased after treatment with DPC,and the Cry1Ac protein content was increased by regulating carbon and amino acid metabolism.
基金Natural Science Foundation of Gansu Province,No.21JR1RA186and the Health Industry Research Program of Gansu Province,No.GSWSKY2021-043.
文摘Despite the continuous developments and advancements in the treatment of gastric cancer(GC),which is one of the most prevalent types of cancer in China,the overall survival is still poor for most patients with advanced GC.In recent years,with the progress in tumor immunology research,attention has shifted toward immunotherapy as a therapeutic approach for GC.Programmed cell death protein 1(PD-1)inhibitors,as novel immunosuppressive medications,have been widely utilized in the treatment of GC.However,many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy.To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy,to maximize the clinical activity of immunosuppressive drugs,and to elicit a lasting immune response,it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients.This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment,aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:82274603 and 82104946)the Natural Science Foundation of Jiangsu Province,China(Grant No.:BK20210817)+3 种基金the Traditional Chinese Medicine Science and Technology Development Project of Jiangsu Province,China(Project code:QN202008)the Young Scientific and Technological Talents Uplift Project of Jiangsu Association of Integrated Traditional Chinese and Western Medicine,China(Grant No.:JSZXTJ-2024-A05)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.:KYCX21_3295)the Yangzhou University Graduate Student International Academic Exchange Special Fund Project,China.Thanks for the Graphical abstract drawn。
文摘Adjuvant chemoradiotherapy,molecular targeted therapy,and immunotherapy are frequently employed to extend the survival of patients with advanced gastric cancer(GC).However,most of these treatments have toxic side effects,drug resistance,and limited improvements in survival and quality of life.Therefore,it is crucial to discover and develop new medications targeting GC that are highly effective and have minimal toxicity.In previous studies,the total terpene extract from the stem of Celastrus orbiculatus demonstrated anti-GC activity;however,the specific mechanism was unclear.Our research utilising coimmunoprecipitation-mass spectrometry(Co-IP-MS),polypyrimidine tract binding protein 1(ptbp1)clustered regularly interspaced short palindromic repeat-associated protein 9(Cas9)-knockout(KO)mouse model,tissue microarray,and functional experiments suggests that alpha actinin-4(ACTN4)could be a significant biomarker of GC.PTBP1 influences actin cytoskeleton restructuring in GC cells by interacting with ACTN4.Celastrus orbiculatus stem extract(COE)may directly target ACTN4 and affect the interaction between PTBP1 and ACTN4,thereby exerting anti-GC effects.
基金funded by the National Natural Science Foundation of China(grant no.32260760)the Science and Technology Program of Guizhou Province(grant no.20201Z002)the Platform Construction Project of Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province(Qianjiaoji[2022]No.040).
文摘Hot pepper(Capsicum annuum var.conoides)is a significant vegetable that is widely cultivated around the world.Currently,global climate change has caused frequent severe weather events,and waterlogging stress harms the pepper industry by affecting the planting period,growth conditions,and disease susceptibility.The gene CaABI3/VP1-1 could improve pepper waterlogging tolerance.In order to explore the upstream regulatory mechanism of CaABI3/VP1-1,a high-quality standardized yeast hybrid library was successfully constructed for yeast one-,two-,and threehybrid screening using pepper‘ZHC2’as the experimental material,with a library recombinant efficiency of up to 100%.The length of inserted fragments varied from 650 to 5000 bp,the library titer was 5.18×10^(6)colony-forming units(CFU)·mL-1,and the library capacity was 1.04×10^(7)CFU of cDNA inserts.The recombinant bait plasmid was used to successfully identify 78 different proteins through the yeast one-hybrid system,including one transcription factor within the ethylene-responsive factor family and the other within the growth-regulating factor family.The interaction happened between LOC124895848 and CaABI3/VP1-1 promoter by point-to-point yeast one-hybrid experiment.The expression level of the 12 selected protein-coding genes was then evaluated by quantitative real-time polymerase chain reaction.Results indicated the protein coding genes showed different responses to waterlogging stress and that the activity of the CaABI3/VP1-1 promoter could be inhibited or activated by up-regulating or down-regulating gene expression,respectively.The identification of these proteins interacting with the promoter provides a new perspective for understanding the gene regulatory network of hot pepper operating under waterlogging stress and provides theoretical support for further analysis of the complex regulatory relationship between transcription factors and promoters.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2021H009).
文摘Objective Keshan disease(KD)is a myocardial mitochondrial disease closely related to insufficient selenium(Se)and protein intake.PTEN induced putative kinase 1(PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body.This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury.Methods A low Se and low protein animal model was established.One hundred Wistar rats were randomly divided into 5 groups(control group,low Se group,low protein group,low Se+low protein group,and corn from KD area group).The JC-1 method was used to detect the mitochondrial membrane potential(MMP).ELISA was used to detect serum creatine kinase MB(CK-MB),cardiac troponin I(cTnI),and mitochondrial-glutamicoxalacetic transaminase(M-GOT)levels.RT-PCR and Western blot analysis were used to detect the expression of PINK1,Parkin,sequestome 1(P62),and microtubule-associated proteins1A/1B light chain 3B(MAP1LC3B).Results The MMP was significantly decreased and the activity of CK-MB,cTnI,and M-GOT significantly increased in each experimental group(low Se group,low protein group,low Se+low protein group and corn from KD area group)compared with the control group(P<0.05 for all).The mRNA and protein expression levels of PINK1,Parkin and MAP1LC3B were profoundly increased,and those of P62 markedly decreased in the experimental groups compared with the control group(P<0.05 for all).Conclusion Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.
文摘Aplastic anemia(AA)is a rare but serious condition in which the bone marrow fails to produce sufficient new blood cells,leading to fatigue,increased susceptibility to infection,and uncontrolled bleeding.In this editorial,we review and comment on an article by Wang et al published in 2024.This study aimed to evaluate the potential therapeutic benefits of ginsenoside Rg1 in AA,focusing on its protective effects and uncovering the underlying mechanisms.Cyclophosphamide(CTX)administration caused substantial damage to the structural integrity of the bone marrow and decreased the number of hematopoietic stem cells,thereby establishing an AA model.Compared with the AA group,ginsenoside Rg1 alleviated the effects of CTX by reducing apoptosis and inflammatory factors.Mechanistically,treatment with ginsenoside Rg1 significantly mitigated myelosuppression in mice by inhibiting the mitogen activated protein kinase signaling pathway.Thus,this study indicates that ginsenoside Rg1 could be effective in treating AA by reducing myelosuppression,primarily through its influence on the mitogen activated protein kinase signaling pathway.We expect that our review and comments will provide valuable insights for the scientific community related to this research and enhance the overall clarity of this article.
基金Supported by Natural Scienee Foundation of Hainan Province(No 30855)
文摘Objective:To investigate the role of Runx3 protein and TGF-β_1 in the pathogenesis of irritable bowel syndrome(IBS),as well as the correlation of these two proteins.Methods:Colonic tissue was collected from patients with IBS and normal persons.The colonic expression of Runx3 protein and TGF-β_1 was detected with immunohislochemistry method.Semi-quantitative analysis was used to evaluate the staining degree of these two proteins.Results:Compared with their counterparts,patients with IBS did not show any changes in the colonic expression of Runx3 protein and TGF-β_1(P>0.05).Interestingly,there was a significant correlation between Runx3 protein and TGF-β_1 in patients with IBS(P<0.05).Conclusions:The role of Runx3 protein and TGF-β_1 in the pathogenesis of IBS remains to be further studied.