源荷双端不确定性导致的频繁弃风切负荷现象严重影响微网运行经济性。为有效应对源荷不确定性,文章提出一种基于最小冗余最大相关-极限梯度提升算法改进非精确狄利克雷模型(minimum redundancy and maximum correlation-extreme gradien...源荷双端不确定性导致的频繁弃风切负荷现象严重影响微网运行经济性。为有效应对源荷不确定性,文章提出一种基于最小冗余最大相关-极限梯度提升算法改进非精确狄利克雷模型(minimum redundancy and maximum correlation-extreme gradient boosting improved imprecise Dirichlet model,mRMR-XGboost-IDM)的两阶段可调鲁棒微网经济调度模型。首先,针对基于非精确狄利克雷模型(imprecise dirichlet model,IDM)模型的不确定模糊集高度依赖历史数据数量的不足,结合mRMR-XGboost预测方法对其进行改进,扩大历史数据体量以提高所得不确定区间的精确度。其次,基于得到的不确定区间,构建微网两阶段鲁棒经济调度模型,并引入可调鲁棒参数协调经济性和鲁棒性。最后,采用列约束生成算法(column-and-constraint generation,C&CG)、对偶理论以及大M法求解最优经济调度策略。算例验证了所提模型可提高不确定区间刻画准确度,有效应对源荷不确定性并提高系统运行经济性。展开更多
Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise condi...Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise conditional probability estimation method for WPREs is proposed based on the Bayesian network(BN)theory.The method uses the maximum weight spanning tree(MWST)and greedy search(GS)to build a BN that has the highest fitting degree with the observed data.Meanwhile,an extended imprecise Dirichlet model(IDM)is developed to estimate the parameters of the BN,which quantificationally reflect the ambiguous dependencies among the random ramp event and various meteorological variables.The BN is then applied to predict the interval probability of each possible ramp state under the given meteorological conditions,which is expected to cover the target probability at a specified confidence level.The proposed method can quantify the uncertainty of the probabilistic ramp event estimation.Meanwhile,by using the extracted dependencies and Bayesian rules,the method can simplify the conditional probability estimation and perform reliable prediction even with scarce samples.Test results on a real wind farm with three-year operation data illustrate the effectiveness of the proposed method.展开更多
Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncer...Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively.展开更多
冷-热-电联供综合能源系统(integrated energy system with combined cool,heat and power system,IES-CCHP)能够就地消纳分布式风电、光伏,也能够同时满足系统内电动汽车用户的充电需求。然而,电动汽车充电需求、风电出力、光伏出力的...冷-热-电联供综合能源系统(integrated energy system with combined cool,heat and power system,IES-CCHP)能够就地消纳分布式风电、光伏,也能够同时满足系统内电动汽车用户的充电需求。然而,电动汽车充电需求、风电出力、光伏出力的随机性严重影响了IES-CCHP运行的经济性。因此,采用两阶段可调鲁棒优化为IES-CCHP制定日前调度策略以提升系统运行经济性。日前阶段在观测到随机变量前制定能够应对最恶劣运行场景的日前调度策略;实时阶段在确认随机变量实际值后决策实时调度计划修正日前调度策略。优化目标为运行两阶段运行总成本最小,模型采用非精确狄利克雷模型挖掘历史数据构建不确定集描述随机变量,并进一步采用对偶理论、大M法、列与约束生成(columnand-constraint generation,C&CG)等方法,迭代求解上述两阶段模型。最后,通过算例分析证明了所提模型与方法的有效性。展开更多
基金supported by the National Key R&D Program of China“Technology and Application of Wind Power/Photovoltaic Power Prediction for Promoting Renewable Energy Consumption”(No.2018YFB0904200)。
文摘Although wind power ramp events(WPREs)are relatively scarce,they can inevitably deteriorate the stability of power system operation and bring risks to the trading of electricity market.In this paper,an imprecise conditional probability estimation method for WPREs is proposed based on the Bayesian network(BN)theory.The method uses the maximum weight spanning tree(MWST)and greedy search(GS)to build a BN that has the highest fitting degree with the observed data.Meanwhile,an extended imprecise Dirichlet model(IDM)is developed to estimate the parameters of the BN,which quantificationally reflect the ambiguous dependencies among the random ramp event and various meteorological variables.The BN is then applied to predict the interval probability of each possible ramp state under the given meteorological conditions,which is expected to cover the target probability at a specified confidence level.The proposed method can quantify the uncertainty of the probabilistic ramp event estimation.Meanwhile,by using the extracted dependencies and Bayesian rules,the method can simplify the conditional probability estimation and perform reliable prediction even with scarce samples.Test results on a real wind farm with three-year operation data illustrate the effectiveness of the proposed method.
文摘Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively.
文摘冷-热-电联供综合能源系统(integrated energy system with combined cool,heat and power system,IES-CCHP)能够就地消纳分布式风电、光伏,也能够同时满足系统内电动汽车用户的充电需求。然而,电动汽车充电需求、风电出力、光伏出力的随机性严重影响了IES-CCHP运行的经济性。因此,采用两阶段可调鲁棒优化为IES-CCHP制定日前调度策略以提升系统运行经济性。日前阶段在观测到随机变量前制定能够应对最恶劣运行场景的日前调度策略;实时阶段在确认随机变量实际值后决策实时调度计划修正日前调度策略。优化目标为运行两阶段运行总成本最小,模型采用非精确狄利克雷模型挖掘历史数据构建不确定集描述随机变量,并进一步采用对偶理论、大M法、列与约束生成(columnand-constraint generation,C&CG)等方法,迭代求解上述两阶段模型。最后,通过算例分析证明了所提模型与方法的有效性。