The preparation of fine TiC powders by carbothermal reduction of TiO2 in vacuum was investigated by XRD,SEM,XRF and laser particle sizer.Thermodynamic analysis indicates that it is easy to prepare TiC in vacuum and th...The preparation of fine TiC powders by carbothermal reduction of TiO2 in vacuum was investigated by XRD,SEM,XRF and laser particle sizer.Thermodynamic analysis indicates that it is easy to prepare TiC in vacuum and the formation sequence of products are Ti4O7(Magneli phase),Ti3O5,Ti2O3,TiCxO1-x and TiC with the increase of reaction temperature.Experimental results demonstrate that TiC powders with single phase are obtained with molar ratio of TiO2 to C ranging from 1:3.2 to 1:6 at 1 550 ℃ for 4 h when the system pressure is 50 Pa,and TiC1.0 is gained when the molar ratio of TiO2 to C is 1:4 and 1:5.In addition,fine TiC1.0 powders(D50 equals 3.04 μm) with single phase and low impurities are obtained when the molar ratio of TiO2 to C is 1:4.SEM observation shows that uniform shape,low agglomeration,and loose structure are observed on the surface of block product.展开更多
The porous spherical LiFePO4/C powders were prepared by spray drying and carbothermal method (SDCTM). Cheaper trivalent iron ion was used as the precursor. The pure olivine phase can be prepared with the spray dryin...The porous spherical LiFePO4/C powders were prepared by spray drying and carbothermal method (SDCTM). Cheaper trivalent iron ion was used as the precursor. The pure olivine phase can be prepared with the spray drying and subsequent heat-treatment. The average particle size is around 10μm, and the value of porosity is 63.04%. The results indicate that the initial discharge capacity decreases with increasing charge/ discharge rate and reduces from 138.8 mAh · g^-1 at C/20 rate to 98.3 mAh ·g^-1 at 2C rate, while the polarization between the charge and discharge plateaux is enlarged from 53 mv to 347 mv. However, the average discharge efficiency is up to 99.5% at 2C rate compared to 80.6% at C/20 rate from the second cycle.展开更多
We investigated the influence of the growth temperature, O_(2) flow, molar ratio between Ga_(2)O_(3) powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire(0001) substrat...We investigated the influence of the growth temperature, O_(2) flow, molar ratio between Ga_(2)O_(3) powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire(0001) substrates by a carbothermal reduction method. Experimental results for the heteroepitaxial growth of β-Ga_(2)O_(3) illustrate that β-Ga_(2)O_(3) growth by the carbothermal reduction method can be controlled. The optimal result was obtained at a growth temperature of 1050 °C. The fastest growth rate of β-Ga_(2)O_(3) films was produced when the O_(2) flow was 20 sccm. To guarantee that β-Ga_(2)O_(3) films with both high-quality crystal and morphology properties, the ideal molar ratio between graphite powder and Ga_(2)O_(3) powder should be set at 10 : 1.展开更多
SiC-Al2O3 composite powder was prepared by sol-gel and carbothermal reduction method. The powder synthesized was characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) to confirm the phase forma...SiC-Al2O3 composite powder was prepared by sol-gel and carbothermal reduction method. The powder synthesized was characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) to confirm the phase formation, and the thermodynamic analysis was performed systematically. Moreover, the variation of its microwave permittivity with different atomic ratio of Al/Si was investigated in the frequency range of 8.2-12.4 GHz. The results show that, the powder obtained consists of spherical particles of 300-400 nm in diameter, which are composed of SiC and Al2O3 microcrystal with the grain size of approximately 45 nm. The results of XRD accord with those of the thermodynamic analysis. It is impossible for Al atoms to dissolve in the lattice of SiC during the carbothermal reduction process. Along with the increase of atomic ratio of Al/Si in the xerogel, the amount of Al2O3 in the powder synthesized increases, which reduces bothε', the real part of complex permittivity, and tgδ(ε'/ε'), the dissipation factor, whereε' is the imaginary part of complex permittivity.展开更多
A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the st...A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the starting materials and propylene oxide (PO) as complexing agent at a low temperature. Simultaneously, the experimen- tal and theoretical studies of ZrB2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like ZrB2 powder without residual ZrO2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400~C in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O sys- tem producing ZrB2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also ob- served that, with the increase of reaction temperature, the reaction which produced ZrB2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system.展开更多
Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths o...Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.展开更多
基金Project(u0837604)supported by the Natural Science Foundation of Yunnan Province,ChinaProject(51004058)supported by the National Natural Science Foundation of ChinaProject(20095314110003)supported by Specialized Research Fund for the Doctoral Program of Higher Education
文摘The preparation of fine TiC powders by carbothermal reduction of TiO2 in vacuum was investigated by XRD,SEM,XRF and laser particle sizer.Thermodynamic analysis indicates that it is easy to prepare TiC in vacuum and the formation sequence of products are Ti4O7(Magneli phase),Ti3O5,Ti2O3,TiCxO1-x and TiC with the increase of reaction temperature.Experimental results demonstrate that TiC powders with single phase are obtained with molar ratio of TiO2 to C ranging from 1:3.2 to 1:6 at 1 550 ℃ for 4 h when the system pressure is 50 Pa,and TiC1.0 is gained when the molar ratio of TiO2 to C is 1:4 and 1:5.In addition,fine TiC1.0 powders(D50 equals 3.04 μm) with single phase and low impurities are obtained when the molar ratio of TiO2 to C is 1:4.SEM observation shows that uniform shape,low agglomeration,and loose structure are observed on the surface of block product.
文摘The porous spherical LiFePO4/C powders were prepared by spray drying and carbothermal method (SDCTM). Cheaper trivalent iron ion was used as the precursor. The pure olivine phase can be prepared with the spray drying and subsequent heat-treatment. The average particle size is around 10μm, and the value of porosity is 63.04%. The results indicate that the initial discharge capacity decreases with increasing charge/ discharge rate and reduces from 138.8 mAh · g^-1 at C/20 rate to 98.3 mAh ·g^-1 at 2C rate, while the polarization between the charge and discharge plateaux is enlarged from 53 mv to 347 mv. However, the average discharge efficiency is up to 99.5% at 2C rate compared to 80.6% at C/20 rate from the second cycle.
基金supported by the National Natural Science Foundation of China under Grant 62104024, Grant 11875097, Grant 12075045, Grant 11975257, Grant 11961141014, and Grant 62074146the Fundamental Research Funds for the Central Universities under Grant DUT19RC (3)074the Natural Science Foundation of Liaoning Province under Grant 2021MS124, Grant 2022020474JH2/1013。
文摘We investigated the influence of the growth temperature, O_(2) flow, molar ratio between Ga_(2)O_(3) powder and graphite powder on the structure and morphology of the films grown on the c-plane sapphire(0001) substrates by a carbothermal reduction method. Experimental results for the heteroepitaxial growth of β-Ga_(2)O_(3) illustrate that β-Ga_(2)O_(3) growth by the carbothermal reduction method can be controlled. The optimal result was obtained at a growth temperature of 1050 °C. The fastest growth rate of β-Ga_(2)O_(3) films was produced when the O_(2) flow was 20 sccm. To guarantee that β-Ga_(2)O_(3) films with both high-quality crystal and morphology properties, the ideal molar ratio between graphite powder and Ga_(2)O_(3) powder should be set at 10 : 1.
基金Project (50572090) supported by the National Natural Science Foundation of China
文摘SiC-Al2O3 composite powder was prepared by sol-gel and carbothermal reduction method. The powder synthesized was characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) to confirm the phase formation, and the thermodynamic analysis was performed systematically. Moreover, the variation of its microwave permittivity with different atomic ratio of Al/Si was investigated in the frequency range of 8.2-12.4 GHz. The results show that, the powder obtained consists of spherical particles of 300-400 nm in diameter, which are composed of SiC and Al2O3 microcrystal with the grain size of approximately 45 nm. The results of XRD accord with those of the thermodynamic analysis. It is impossible for Al atoms to dissolve in the lattice of SiC during the carbothermal reduction process. Along with the increase of atomic ratio of Al/Si in the xerogel, the amount of Al2O3 in the powder synthesized increases, which reduces bothε', the real part of complex permittivity, and tgδ(ε'/ε'), the dissipation factor, whereε' is the imaginary part of complex permittivity.
基金Supported by the Fund for the Self-dependent Innovation of Tianjin University(2014)
文摘A single phase of zirconium diboride (ZrB2) powder was successfully synthesized by sol-gel method in Zr-B-C-O system, using zirconium oxychloride (ZrOC12 ~ 8H20), nano-scale boron and suerose(C12H22011)as the starting materials and propylene oxide (PO) as complexing agent at a low temperature. Simultaneously, the experimen- tal and theoretical studies of ZrB2 synthesized by boro/carbothermal reduction from novel sol-gel technology were discussed. The results indicated that the pure rod-like ZrB2 powder without residual ZrO2 phase could be obtained with a B/Zr molar ratio of 3.5 at 1 400~C in argon atmosphere. Besides, in this study, a kinetic model for the Zr-B-C-O sys- tem producing ZrB2 by boro/carbothermal reaction was established based on thermodynamic analysis. It was also ob- served that, with the increase of reaction temperature, the reaction which produced ZrB2 powders changed from the borothermal reaction to boro/carbothermal reaction in the Zr-B-C-O system.
文摘Vanadium nitrides were prepared via one step method of carbothermal reduction and nitridation of vanadium trioxide. Thermalgravimetric analysis (TGA) and X-ray diffraction were used to determine the reaction paths of vanadium carbide, namely the following sequential reaction: V2O3→V8C7 in higher temperature stage, the rule of vanadium nitride synthesized was established, and defined conditions of temperature for the production of the carbides and nitrides were determined. Vanadium oxycarbide may consist in the front process of carbothermal reduction of vanadium trioxide. In one step method for vanadium nitride by carbothermal reduction and nitridation of vanadium trioxide, the nitridation process is simultaneous with the carbothermal reduction. A one-step mechanism of the carbothermal reduction with simultaneous nitridation leaded to a lower terminal temperature in nitridation process for vanadium nitride produced, compared with that of carbothermal reduction process without nitridation. The grain size and shape of vanadium nitride were uniform, and had the shape of a cube. The one step method combined vacuum carborization and nitridation (namely two step method) into one process. It simplified the technological process and decreased the costs.