The change of conductivity and transparency of silver nanowire (AgNW) films by adding silver nano-particles (AgNPs) onto their surface is studied. The results show that the conductivity of the AgNW film is greatly...The change of conductivity and transparency of silver nanowire (AgNW) films by adding silver nano-particles (AgNPs) onto their surface is studied. The results show that the conductivity of the AgNW film is greatly improved with its sheet resistance reduced about 78. 7% to 51.9Ω/sq, and there is no obvious reduction of the transmittance. Further studies show that there is a self-assembling process pushing the AgNPs to concentrate at the intersecting points between AgNWs to weld them, which would reduce the intersection resistance between the AgNWs. This self-assembling behavior is led by the surface interactivities among the dispersing liquid of AgNPs, the surface of the substrate and AgNWs when the dispersing liquid is drying.展开更多
Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images an...Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.展开更多
All-solid-state batteries equipped with solid-state electrolytes(SSEs)havegained significant interest due to their enhanced safety,energy density,andlongevity in comparison to traditional liquid organic electrolyte-ba...All-solid-state batteries equipped with solid-state electrolytes(SSEs)havegained significant interest due to their enhanced safety,energy density,andlongevity in comparison to traditional liquid organic electrolyte-based batteries.However,many SSEs,such as sulfides and hydrides,are highly sensitiveto water,limiting their practical use.As one class of important perovskites,theRuddlesden–Popper perovskite oxides(RPPOs),show great promise as SSEsdue to their exceptional stability,particularly in terms of water resistance.Inthis review,the crystal structure and synthesis methods of RPPOs SSEs are firstintroduced in brief.Subsequently,the mechanisms of ion transportation,including oxygen anions and lithium-ions,and the relevant strategies forenhancing their ionic conductivity are described in detail.Additionally,theprogress made in developing flexible RPPOs SSEs,which are critical for flexibleand wearable electronic devices,has also been summarized.Furthermore,thekey challenges and prospects for exploring and developing RPPOs SSEs in allsolid-state batteries are suggested.This review presents in detail the synthesismethods,the ion transportation mechanism,and strategies to enhance theroom temperature ionic conductivity of RPPOs SSEs,providing valuableinsights on enhancing their ionic conductivity and thus for their practicalapplication in solid-state batteries.展开更多
文摘The change of conductivity and transparency of silver nanowire (AgNW) films by adding silver nano-particles (AgNPs) onto their surface is studied. The results show that the conductivity of the AgNW film is greatly improved with its sheet resistance reduced about 78. 7% to 51.9Ω/sq, and there is no obvious reduction of the transmittance. Further studies show that there is a self-assembling process pushing the AgNPs to concentrate at the intersecting points between AgNWs to weld them, which would reduce the intersection resistance between the AgNWs. This self-assembling behavior is led by the surface interactivities among the dispersing liquid of AgNPs, the surface of the substrate and AgNWs when the dispersing liquid is drying.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.11634014,51172271,51372269,and 51472264)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDA09040202)
文摘Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%.
基金National Natural Science Foundation of China,Grant/Award Numbers:21671106,22371043,62288102Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Minjiang Scholars Award Program(2023),Fujian ProvinceStart-Up Fund for High-Leveled Talents from Fujian Normal University,Grant/Award Numbers:Y0720316K13,Y0720320K13。
文摘All-solid-state batteries equipped with solid-state electrolytes(SSEs)havegained significant interest due to their enhanced safety,energy density,andlongevity in comparison to traditional liquid organic electrolyte-based batteries.However,many SSEs,such as sulfides and hydrides,are highly sensitiveto water,limiting their practical use.As one class of important perovskites,theRuddlesden–Popper perovskite oxides(RPPOs),show great promise as SSEsdue to their exceptional stability,particularly in terms of water resistance.Inthis review,the crystal structure and synthesis methods of RPPOs SSEs are firstintroduced in brief.Subsequently,the mechanisms of ion transportation,including oxygen anions and lithium-ions,and the relevant strategies forenhancing their ionic conductivity are described in detail.Additionally,theprogress made in developing flexible RPPOs SSEs,which are critical for flexibleand wearable electronic devices,has also been summarized.Furthermore,thekey challenges and prospects for exploring and developing RPPOs SSEs in allsolid-state batteries are suggested.This review presents in detail the synthesismethods,the ion transportation mechanism,and strategies to enhance theroom temperature ionic conductivity of RPPOs SSEs,providing valuableinsights on enhancing their ionic conductivity and thus for their practicalapplication in solid-state batteries.