期刊文献+
共找到9,694篇文章
< 1 2 250 >
每页显示 20 50 100
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm
1
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization improved PSO algorithm
下载PDF
An Improved Iterated Greedy Algorithm for Solving Rescue Robot Path Planning Problem with Limited Survival Time
2
作者 Xiaoqing Wang Peng Duan +1 位作者 Leilei Meng Kaidong Yang 《Computers, Materials & Continua》 SCIE EI 2024年第7期931-947,共17页
Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning probl... Effective path planning is crucial for mobile robots to quickly reach rescue destination and complete rescue tasks in a post-disaster scenario.In this study,we investigated the post-disaster rescue path planning problem and modeled this problem as a variant of the travel salesman problem(TSP)with life-strength constraints.To address this problem,we proposed an improved iterated greedy(IIG)algorithm.First,a push-forward insertion heuristic(PFIH)strategy was employed to generate a high-quality initial solution.Second,a greedy-based insertion strategy was designed and used in the destruction-construction stage to increase the algorithm’s exploration ability.Furthermore,three problem-specific swap operators were developed to improve the algorithm’s exploitation ability.Additionally,an improved simulated annealing(SA)strategy was used as an acceptance criterion to effectively prevent the algorithm from falling into local optima.To verify the effectiveness of the proposed algorithm,the Solomon dataset was extended to generate 27 instances for simulation.Finally,the proposed IIG was compared with five state-of-the-art algorithms.The parameter analysiswas conducted using the design of experiments(DOE)Taguchi method,and the effectiveness analysis of each component has been verified one by one.Simulation results indicate that IIGoutperforms the compared algorithms in terms of the number of rescue survivors and convergence speed,proving the effectiveness of the proposed algorithm. 展开更多
关键词 Rescue robot path planning life strength improved iterative greedy algorithm problem-specific swap operators
下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm
3
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 Sparrow search algorithm optimization and improvement function test set evacuation path planning
下载PDF
Image encryption algorithm based on multiple chaotic systems and improved Joseph block scrambling
4
作者 Dingkang Mou Yumin Dong 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期248-257,共10页
With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and... With the rapid development of digital information technology,images are increasingly used in various fields.To ensure the security of image data,prevent unauthorized tampering and leakage,maintain personal privacy,and protect intellectual property rights,this study proposes an innovative color image encryption algorithm.Initially,the Mersenne Twister algorithm is utilized to generate high-quality pseudo-random numbers,establishing a robust basis for subsequent operations.Subsequently,two distinct chaotic systems,the autonomous non-Hamiltonian chaotic system and the tentlogistic-cosine chaotic mapping,are employed to produce chaotic random sequences.These chaotic sequences are used to control the encoding and decoding process of the DNA,effectively scrambling the image pixels.Furthermore,the complexity of the encryption process is enhanced through improved Joseph block scrambling.Thorough experimental verification,research,and analysis,the average value of the information entropy test data reaches as high as 7.999.Additionally,the average value of the number of pixels change rate(NPCR)test data is 99.6101%,which closely approaches the ideal value of 99.6094%.This algorithm not only guarantees image quality but also substantially raises the difficulty of decryption. 展开更多
关键词 mersenne twister algorithm DNA coding confusion pixel XOR operation improved Joseph block scrambling
下载PDF
Hybrid Gene Selection Methods for High-Dimensional Lung Cancer Data Using Improved Arithmetic Optimization Algorithm
5
作者 Mutasem K.Alsmadi 《Computers, Materials & Continua》 SCIE EI 2024年第6期5175-5200,共26页
Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression ... Lung cancer is among the most frequent cancers in the world,with over one million deaths per year.Classification is required for lung cancer diagnosis and therapy to be effective,accurate,and reliable.Gene expression microarrays have made it possible to find genetic biomarkers for cancer diagnosis and prediction in a high-throughput manner.Machine Learning(ML)has been widely used to diagnose and classify lung cancer where the performance of ML methods is evaluated to identify the appropriate technique.Identifying and selecting the gene expression patterns can help in lung cancer diagnoses and classification.Normally,microarrays include several genes and may cause confusion or false prediction.Therefore,the Arithmetic Optimization Algorithm(AOA)is used to identify the optimal gene subset to reduce the number of selected genes.Which can allow the classifiers to yield the best performance for lung cancer classification.In addition,we proposed a modified version of AOA which can work effectively on the high dimensional dataset.In the modified AOA,the features are ranked by their weights and are used to initialize the AOA population.The exploitation process of AOA is then enhanced by developing a local search algorithm based on two neighborhood strategies.Finally,the efficiency of the proposed methods was evaluated on gene expression datasets related to Lung cancer using stratified 4-fold cross-validation.The method’s efficacy in selecting the optimal gene subset is underscored by its ability to maintain feature proportions between 10%to 25%.Moreover,the approach significantly enhances lung cancer prediction accuracy.For instance,Lung_Harvard1 achieved an accuracy of 97.5%,Lung_Harvard2 and Lung_Michigan datasets both achieved 100%,Lung_Adenocarcinoma obtained an accuracy of 88.2%,and Lung_Ontario achieved an accuracy of 87.5%.In conclusion,the results indicate the potential promise of the proposed modified AOA approach in classifying microarray cancer data. 展开更多
关键词 Lung cancer gene selection improved arithmetic optimization algorithm and machine learning
下载PDF
Optimal Configuration of Fault Location Measurement Points in DC Distribution Networks Based on Improved Particle Swarm Optimization Algorithm
6
作者 Huanan Yu Hangyu Li +1 位作者 He Wang Shiqiang Li 《Energy Engineering》 EI 2024年第6期1535-1555,共21页
The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optim... The escalating deployment of distributed power sources and random loads in DC distribution networks hasamplified the potential consequences of faults if left uncontrolled. To expedite the process of achieving an optimalconfiguration of measurement points, this paper presents an optimal configuration scheme for fault locationmeasurement points in DC distribution networks based on an improved particle swarm optimization algorithm.Initially, a measurement point distribution optimization model is formulated, leveraging compressive sensing.The model aims to achieve the minimum number of measurement points while attaining the best compressivesensing reconstruction effect. It incorporates constraints from the compressive sensing algorithm and networkwide viewability. Subsequently, the traditional particle swarm algorithm is enhanced by utilizing the Haltonsequence for population initialization, generating uniformly distributed individuals. This enhancement reducesindividual search blindness and overlap probability, thereby promoting population diversity. Furthermore, anadaptive t-distribution perturbation strategy is introduced during the particle update process to enhance the globalsearch capability and search speed. The established model for the optimal configuration of measurement points issolved, and the results demonstrate the efficacy and practicality of the proposed method. The optimal configurationreduces the number of measurement points, enhances localization accuracy, and improves the convergence speedof the algorithm. These findings validate the effectiveness and utility of the proposed approach. 展开更多
关键词 Optimal allocation improved particle swarm algorithm fault location compressed sensing DC distribution network
下载PDF
An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem
7
作者 Zhaolin Lv Yuexia Zhao +2 位作者 Hongyue Kang Zhenyu Gao Yuhang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第2期2337-2360,共24页
Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been... Flexible job shop scheduling problem(FJSP)is the core decision-making problem of intelligent manufacturing production management.The Harris hawk optimization(HHO)algorithm,as a typical metaheuristic algorithm,has been widely employed to solve scheduling problems.However,HHO suffers from premature convergence when solving NP-hard problems.Therefore,this paper proposes an improved HHO algorithm(GNHHO)to solve the FJSP.GNHHO introduces an elitism strategy,a chaotic mechanism,a nonlinear escaping energy update strategy,and a Gaussian random walk strategy to prevent premature convergence.A flexible job shop scheduling model is constructed,and the static and dynamic FJSP is investigated to minimize the makespan.This paper chooses a two-segment encoding mode based on the job and the machine of the FJSP.To verify the effectiveness of GNHHO,this study tests it in 23 benchmark functions,10 standard job shop scheduling problems(JSPs),and 5 standard FJSPs.Besides,this study collects data from an agricultural company and uses the GNHHO algorithm to optimize the company’s FJSP.The optimized scheduling scheme demonstrates significant improvements in makespan,with an advancement of 28.16%for static scheduling and 35.63%for dynamic scheduling.Moreover,it achieves an average increase of 21.50%in the on-time order delivery rate.The results demonstrate that the performance of the GNHHO algorithm in solving FJSP is superior to some existing algorithms. 展开更多
关键词 Flexible job shop scheduling improved Harris hawk optimization algorithm(GNHHO) premature convergence maximum completion time(makespan)
下载PDF
Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm
8
作者 Zhuo Chen Ningning Wang +1 位作者 Wenbo Jin Dui Li 《Energy Engineering》 EI 2024年第4期1007-1026,共20页
A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax depositi... A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines.To ensure the safe operation of crude oil pipelines,an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines.Aiming at the shortcomings of the ENN prediction model,which easily falls into the local minimum value and weak generalization ability in the implementation process,an optimized ENN prediction model based on the IRSA is proposed.The validity of the new model was confirmed by the accurate prediction of two sets of experimental data on wax deposition in crude oil pipelines.The two groups of crude oil wax deposition rate case prediction results showed that the average absolute percentage errors of IRSA-ENN prediction models is 0.5476% and 0.7831%,respectively.Additionally,it shows a higher prediction accuracy compared to the ENN prediction model.In fact,the new model established by using the IRSA to optimize ENN can optimize the initial weights and thresholds in the prediction process,which can overcome the shortcomings of the ENN prediction model,such as weak generalization ability and tendency to fall into the local minimum value,so that it has the advantages of strong implementation and high prediction accuracy. 展开更多
关键词 Waxy crude oil wax deposition rate chaotic map improved reptile search algorithm Elman neural network prediction accuracy
下载PDF
Improved parallel weighted bit-flipping algorithm 被引量:1
9
作者 刘晓健 赵春明 吴晓富 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期423-426,共4页
An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ... An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes. 展开更多
关键词 low-density parity-check(LDPC) parallel weighted bit-flipping(PWBF) improved modified weighted bit-flipping (IMWBF) algorithm weighted-sum weighted bit-flipping (WSWBF) algorithm
下载PDF
An Improved DV-Hop Localization Algorithm Based on Hop Distances Correction 被引量:9
10
作者 Guiqi Liu Zhihong Qian Xue Wang 《China Communications》 SCIE CSCD 2019年第6期200-214,共15页
DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown ... DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms. 展开更多
关键词 WSN DV-HOP localization algorithm HOP Distance CORRECTION improved Differential Evolution algorithm
下载PDF
Global optimal path planning for mobile robot based onimproved Dijkstra algorithm and ant system algorithm 被引量:20
11
作者 谭冠政 贺欢 Aaron Sloman 《Journal of Central South University of Technology》 EI 2006年第1期80-86,共7页
A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK ... A novel method of global optimal path planning for mobile robot was proposed based on the improved Dijkstra algorithm and ant system algorithm. This method includes three steps: the first step is adopting the MAKLINK graph theory to establish the free space model of the mobile robot, the second step is adopting the improved Dijkstra algorithm to find out a sub-optimal collision-free path, and the third step is using the ant system algorithm to adjust and optimize the location of the sub-optimal path so as to generate the global optimal path for the mobile robot. The computer simulation experiment was carried out and the results show that this method is correct and effective. The comparison of the results confirms that the proposed method is better than the hybrid genetic algorithm in the global optimal path planning. 展开更多
关键词 mobile robot global optimal path planning improved Dijkstra algorithm ant system algorithm MAKLINK graph free MAKLINK line
下载PDF
Improved Dijkstra Algorithm for Mobile Robot Path Planning and Obstacle Avoidance 被引量:9
12
作者 Shaher Alshammrei Sahbi Boubaker Lioua Kolsi 《Computers, Materials & Continua》 SCIE EI 2022年第9期5939-5954,共16页
Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented prac... Optimal path planning avoiding obstacles is among the most attractive applications of mobile robots(MRs)in both research and education.In this paper,an optimal collision-free algorithm is designed and implemented practically based on an improved Dijkstra algorithm.To achieve this research objectives,first,the MR obstacle-free environment is modeled as a diagraph including nodes,edges and weights.Second,Dijkstra algorithm is used offline to generate the shortest path driving the MR from a starting point to a target point.During its movement,the robot should follow the previously obtained path and stop at each node to test if there is an obstacle between the current node and the immediately following node.For this aim,the MR was equipped with an ultrasonic sensor used as obstacle detector.If an obstacle is found,the MR updates its diagraph by excluding the corresponding node.Then,Dijkstra algorithm runs on the modified diagraph.This procedure is repeated until reaching the target point.To verify the efficiency of the proposed approach,a simulation was carried out on a hand-made MR and an environment including 9 nodes,19 edges and 2 obstacles.The obtained optimal path avoiding obstacles has been transferred into motion control and implemented practically using line tracking sensors.This study has shown that the improved Dijkstra algorithm can efficiently solve optimal path planning in environments including obstacles and that STEAM-based MRs are efficient cost-effective tools to practically implement the designed algorithm. 展开更多
关键词 Mobile robot(MR) STEAM path planning obstacle avoidance improved dijkstra algorithm
下载PDF
Improved algorithms to plan missions for agile earth observation satellites 被引量:3
13
作者 Huicheng Hao Wei Jiang Yijun Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期811-821,共11页
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell... This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective. 展开更多
关键词 mission planning immune clone algorithm hybrid genetic algorithm (EA) improved ant colony algorithm general particle swarm optimization (PSO) agile earth observation satellite (AEOS).
下载PDF
Two-Dimension Path Planning Method Based on Improved Ant Colony Algorithm 被引量:4
14
作者 Rong Wang Hong Jiang 《Advances in Pure Mathematics》 2015年第9期571-578,共8页
Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search,... Nowadays, path planning has become an important field of research focus. Considering that the ant colony algorithm has numerous advantages such as the distributed computing and the characteristics of heuristic search, how to combine the algorithm with two-dimension path planning effectively is much important. In this paper, an improved ant colony algorithm is used in resolving this path planning problem, which can improve convergence rate by using this improved algorithm. MAKLINK graph is adopted to establish the two-dimensional space model at first, after that the Dijkstra algorithm is selected as the initial planning algorithm to get an initial path, immediately following, optimizing the select parameters relating on the ant colony algorithm and its improved algorithm. After making the initial parameter, the authors plan out an optimal path from start to finish in a known environment through ant colony algorithm and its improved algorithm. Finally, Matlab is applied as software tool for coding and simulation validation. Numerical experiments show that the improved algorithm can play a more appropriate path planning than the origin algorithm in the completely observable. 展开更多
关键词 PATH PLANNING DIJKSTRA improved ANT COLONY algorithm
下载PDF
An Improved Genetic Algorithm for Allocation Optimization of Distribution Centers 被引量:7
15
作者 钱晶 庞小红 吴智铭 《Journal of Shanghai Jiaotong university(Science)》 EI 2004年第4期73-76,共4页
This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorit... This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality. 展开更多
关键词 distribution center allocation optimization improved genetic algorithm
下载PDF
Improved algorithm of atmospheric refraction error in Longley-Rice channel model 被引量:2
16
作者 Wang Zuliang Zheng Mao +1 位作者 Wang Juan Zheng Linhua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期683-687,共5页
Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use o... Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation. 展开更多
关键词 radio wave propagation atmospheric refraction error correction algorithm improvement Longley- Rice model.
下载PDF
Identification of Convective and Stratiform Clouds Based on the Improved DBSCAN Clustering Algorithm 被引量:5
17
作者 Yuanyuan ZUO Zhiqun HU +3 位作者 Shujie YUAN Jiafeng ZHENG Xiaoyan YIN Boyong LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第12期2203-2212,共10页
A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clo... A convective and stratiform cloud classification method for weather radar is proposed based on the density-based spatial clustering of applications with noise(DBSCAN)algorithm.To identify convective and stratiform clouds in different developmental phases,two-dimensional(2D)and three-dimensional(3D)models are proposed by applying reflectivity factors at 0.5°and at 0.5°,1.5°,and 2.4°elevation angles,respectively.According to the thresholds of the algorithm,which include echo intensity,the echo top height of 35 dBZ(ET),density threshold,andεneighborhood,cloud clusters can be marked into four types:deep-convective cloud(DCC),shallow-convective cloud(SCC),hybrid convective-stratiform cloud(HCS),and stratiform cloud(SFC)types.Each cloud cluster type is further identified as a core area and boundary area,which can provide more abundant cloud structure information.The algorithm is verified using the volume scan data observed with new-generation S-band weather radars in Nanjing,Xuzhou,and Qingdao.The results show that cloud clusters can be intuitively identified as core and boundary points,which change in area continuously during the process of convective evolution,by the improved DBSCAN algorithm.Therefore,the occurrence and disappearance of convective weather can be estimated in advance by observing the changes of the classification.Because density thresholds are different and multiple elevations are utilized in the 3D model,the identified echo types and areas are dissimilar between the 2D and 3D models.The 3D model identifies larger convective and stratiform clouds than the 2D model.However,the developing convective clouds of small areas at lower heights cannot be identified with the 3D model because they are covered by thick stratiform clouds.In addition,the 3D model can avoid the influence of the melting layer and better suggest convective clouds in the developmental stage. 展开更多
关键词 improved DBSCAN clustering algorithm cloud identification and classification 2D model 3D model weather radar
下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
18
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IAPSO) algorithm minimum makespan
下载PDF
An improved bearing fault detection strategy based on artificial bee colony algorithm 被引量:3
19
作者 Haiquan Wang Wenxuan Yue +6 位作者 Shengjun Wen Xiaobin Xu Hans-Dietrich Haasis Menghao Su Ping liu Shanshan Zhang Panpan Du 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期570-581,共12页
The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit... The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy. 展开更多
关键词 fault diagnosis feature extraction improved artificial bee colony algorithm improved one-dimensional ternary pattern method shapelet transformation
下载PDF
Investigate the kinetics of coke solution loss reaction with an alkali metal as a catalyst based on the improved genetic algorithm 被引量:2
20
作者 Zhao Lei Yunhe Zhang Ping Cui 《International Journal of Coal Science & Technology》 EI 2018年第4期430-438,共9页
The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to ... The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to eliminate the external and inteirial diffusion, respectively. Then, the improved method combining with the least square and the genetic algorithm was proposed to solve the homogeneous model and the shrinking core model. It was found that the improved genetic algorithm method has good stability by studying the fitness function at each generation. In the homogeneous model, the activation energy with and without sodium carbonate was 54.89 and 95.56 kJ/mol, respectively. And. the activation energy with and without sodium carbonate in the shrinking core model was 49.83 and 92.18 kJ/mol, respectively. Therefore, it was concluded that the sodium carbonate has the catalytic action. In addition, results showed that the estimated conversions were agreed well with the experimental ones, which indicated that the calculated kinetic parameters were valid and the proposed method was successfully developed. 展开更多
关键词 COKING KINETIC improved genetic algorithm ALKALI metal CATALYST
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部