为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确...为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确定短期风速预测输入量与输出量的关系。利用Tent映射和参数非线性调整策略对灰狼算法进行改进,得到了优化性能更强的改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法,并利用测试函数验证了IGWO算法能够加快迭代收敛,提高计算精度。采用IGWO算法对WLSSVM的惩罚系数和核参数进行优化,建立基于IGWO-WLSSVM的短期风功率预测模型。采用某风电场春夏两个不同季节的风功率数据进行算例分析,结果表明,所提短期风功率预测结果的平均相对误差、均方根误差和最大相对误差更小,风功率预测精度和预测结果的稳定性均优于其他方法,验证了所提方法的有效性和实用性。展开更多
Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play...Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.展开更多
文摘为提高风功率短期预测的准确率,提出一种基于改进灰狼算法优化加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLSSVM)的短期风功率预测方法。采用C-C法对风功率时间序列的嵌入维数进行了计算,根据计算结果确定短期风速预测输入量与输出量的关系。利用Tent映射和参数非线性调整策略对灰狼算法进行改进,得到了优化性能更强的改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法,并利用测试函数验证了IGWO算法能够加快迭代收敛,提高计算精度。采用IGWO算法对WLSSVM的惩罚系数和核参数进行优化,建立基于IGWO-WLSSVM的短期风功率预测模型。采用某风电场春夏两个不同季节的风功率数据进行算例分析,结果表明,所提短期风功率预测结果的平均相对误差、均方根误差和最大相对误差更小,风功率预测精度和预测结果的稳定性均优于其他方法,验证了所提方法的有效性和实用性。
基金sponsored by the National Science and Technology Major Project(No.2011ZX05023-005-006)
文摘Data mining is the process of extracting implicit but potentially useful information from incomplete, noisy, and fuzzy data. Data mining offers excellent nonlinear modeling and self-organized learning, and it can play a vital role in the interpretation of well logging data of complex reservoirs. We used data mining to identify the lithologies in a complex reservoir. The reservoir lithologies served as the classification task target and were identified using feature extraction, feature selection, and modeling of data streams. We used independent component analysis to extract information from well curves. We then used the branch-and- bound algorithm to look for the optimal feature subsets and eliminate redundant information. Finally, we used the C5.0 decision-tree algorithm to set up disaggregated models of the well logging curves. The modeling and actual logging data were in good agreement, showing the usefulness of data mining methods in complex reservoirs.