To obtain a suitable scheduling scheme in an effective time range,the minimum completion time is taken as the objective of Flexible Job Shop scheduling Problems(FJSP)with different scales,and Composite Dispatching Rul...To obtain a suitable scheduling scheme in an effective time range,the minimum completion time is taken as the objective of Flexible Job Shop scheduling Problems(FJSP)with different scales,and Composite Dispatching Rules(CDRs)are applied to generate feasible solutions.Firstly,the binary tree coding method is adopted,and the constructed function set is normalized.Secondly,a CDR mining approach based on an Improved Genetic Programming Algorithm(IGPA)is designed.Two population initialization methods are introduced to enrich the initial population,and a superior and inferior population separation strategy is designed to improve the global search ability of the algorithm.At the same time,two individual mutation methods are introduced to improve the algorithm’s local search ability,to achieve the balance between global search and local search.In addition,the effectiveness of the IGPA and the superiority of CDRs are verified through comparative analysis.Finally,Deep Reinforcement Learning(DRL)is employed to solve the FJSP by incorporating the CDRs as the action set,the selection times are counted to further verify the superiority of CDRs.展开更多
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to ...The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to eliminate the external and inteirial diffusion, respectively. Then, the improved method combining with the least square and the genetic algorithm was proposed to solve the homogeneous model and the shrinking core model. It was found that the improved genetic algorithm method has good stability by studying the fitness function at each generation. In the homogeneous model, the activation energy with and without sodium carbonate was 54.89 and 95.56 kJ/mol, respectively. And. the activation energy with and without sodium carbonate in the shrinking core model was 49.83 and 92.18 kJ/mol, respectively. Therefore, it was concluded that the sodium carbonate has the catalytic action. In addition, results showed that the estimated conversions were agreed well with the experimental ones, which indicated that the calculated kinetic parameters were valid and the proposed method was successfully developed.展开更多
An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector w...An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.展开更多
This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorit...This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.展开更多
As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weigh...As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.展开更多
The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study...The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA.展开更多
Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of...Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.展开更多
As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new meth...As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completi...In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability.展开更多
Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state ...Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state space directly and has distributed computing version.Soit is faster and gives higher precision.Aided by IGA,a new optimization strategy for theflexibility analysis and retrofitting of existing heat exchanger networks is presented.A case studyshows that IGA has the ability of finding the global optimum with higher speed and better preci-sion.展开更多
This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mut...This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.展开更多
Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development o...Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.展开更多
The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.Th...The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.展开更多
This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined ...This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.展开更多
The UWB localization problem can be mapped as an optimization problem, which can be solved by genetic algorithm. In the localization process, the traditional fitness function does not include the ranging information b...The UWB localization problem can be mapped as an optimization problem, which can be solved by genetic algorithm. In the localization process, the traditional fitness function does not include the ranging information between tags, resulting in insufficient ranging information and limited improvement of the localization accuracy. In view of this, an improved genetic localization algorithm is proposed. First, a new fitness function is constructed, which not only includes the ranging information between the tag and the base station, but also the ranging information between the tags to ensure that the ranging information is fully utilized in the localization process. Then, the search method based on Brownian motion is adopted to ensure that the improved algorithm can speed up the convergence speed of the localization result. The simulation results show that, compared with the traditional genetic localization algorithm, the improved genetic localization algorithm can reduce the influence of the ranging error on the localization error and improve the localization performance.展开更多
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op...A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.展开更多
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform...Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51805152 and 52075401)the Green Industry Technology Leading Program of Hubei University of Technology(No.XJ2021005001)+1 种基金the Scientific Research Foundation for High-level Talents of Hubei University of Technology(No.GCRC2020009)the Natural Science Foundation of Hubei Province(No.2022CFB445).
文摘To obtain a suitable scheduling scheme in an effective time range,the minimum completion time is taken as the objective of Flexible Job Shop scheduling Problems(FJSP)with different scales,and Composite Dispatching Rules(CDRs)are applied to generate feasible solutions.Firstly,the binary tree coding method is adopted,and the constructed function set is normalized.Secondly,a CDR mining approach based on an Improved Genetic Programming Algorithm(IGPA)is designed.Two population initialization methods are introduced to enrich the initial population,and a superior and inferior population separation strategy is designed to improve the global search ability of the algorithm.At the same time,two individual mutation methods are introduced to improve the algorithm’s local search ability,to achieve the balance between global search and local search.In addition,the effectiveness of the IGPA and the superiority of CDRs are verified through comparative analysis.Finally,Deep Reinforcement Learning(DRL)is employed to solve the FJSP by incorporating the CDRs as the action set,the selection times are counted to further verify the superiority of CDRs.
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.
基金the National Natural Science Foundation of China(21476001)Key Project of Anhui Provincial Department of Education(KJ2017A045)are gratefully acknowledgedOpen Fund of Shaanxi Key Laboratory of Energy Chemical Process Intensification(No.SXECPI201601).
文摘The kinetics of coke solution loss reaction with and without sodium carbonate were investigated under the reaction atmosphere of carb on dioxide. The variables of gas flow rate and coke particle size were explored to eliminate the external and inteirial diffusion, respectively. Then, the improved method combining with the least square and the genetic algorithm was proposed to solve the homogeneous model and the shrinking core model. It was found that the improved genetic algorithm method has good stability by studying the fitness function at each generation. In the homogeneous model, the activation energy with and without sodium carbonate was 54.89 and 95.56 kJ/mol, respectively. And. the activation energy with and without sodium carbonate in the shrinking core model was 49.83 and 92.18 kJ/mol, respectively. Therefore, it was concluded that the sodium carbonate has the catalytic action. In addition, results showed that the estimated conversions were agreed well with the experimental ones, which indicated that the calculated kinetic parameters were valid and the proposed method was successfully developed.
基金supported by the National Natural Science Foundation of China (60632050)National Basic Research Program of Jiangsu Province University (08KJB520003)
文摘An improved genetic algorithm(IGA) based on a novel selection strategy to handle nonlinear programming problems is proposed.Each individual in selection process is represented as a three-dimensional feature vector which is composed of objective function value,the degree of constraints violations and the number of constraints violations.It is easy to distinguish excellent individuals from general individuals by using an individuals' feature vector.Additionally,a local search(LS) process is incorporated into selection operation so as to find feasible solutions located in the neighboring areas of some infeasible solutions.The combination of IGA and LS should offer the advantage of both the quality of solutions and diversity of solutions.Experimental results over a set of benchmark problems demonstrate that IGA has better performance than other algorithms.
文摘This paper introduced an integrated allocation model for distribution centers (DCs). The facility cost, inventory cost, transportation cost and service quality were considered in the model. An improved genetic algorithm (IGA) was proposed to solve the problem. The improvement of IGA is based on the idea of adjusting crossover probability and mutation probability. The IGA is supplied by heuristic rules too. The simulation results show that the IGA is better than the standard GA(SGA) in search efficiency and equality.
基金Project (Nos. 2006BAK04A02-02 and 2006BAK02B02-08) sup-ported by the National Key Technology R&D Program, China
文摘As the idea of simulated annealing (SA) is introduced into the fitness function, an improved genetic algorithm (GA) is proposed to perform the optimal design of a pressure vessel which aims to attain the minimum weight under burst pressure con- straint. The actual burst pressure is calculated using the arc-length and restart analysis in finite element analysis (FEA). A penalty function in the fitness function is proposed to deal with the constrained problem. The effects of the population size and the number of generations in the GA on the weight and burst pressure of the vessel are explored. The optimization results using the proposed GA are also compared with those using the simple GA and the conventional Monte Carlo method.
文摘The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA.
文摘Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.
基金This paper is supported by the National Youth Natural Science Foundation of China(61802208)the National Natural Science Foundation of China(61572261)+4 种基金the Natural Science Foundation of Anhui(1908085MF207 and 1908085QE217)the Excellent Youth Talent Support Foundation of Anhui(gxyqZD2019097)the Postdoctoral Foundation of Jiangsu(2018K009B)the Higher Education Quality Project of Anhui(2019sjjd81,2018mooc059,2018kfk009,2018sxzx38 and 2018FXJT02)the Fuyang Normal University Doctoral Startup Foundation and Fuyang Government Research Foundation(2017KYQD0008 and XDHXTD201703).
文摘As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
基金National Natural Science Foundation of China(61473216)Shaanxi Provincial Fund(2015JM6337)。
文摘In order to solve the problem that the resource scheduling time of cloud data center is too long,this paper analyzes the two-stage resource scheduling mechanism of cloud data center.Aiming at the minimum task completion time,a mathematical model of resource scheduling in cloud data center is established.The two-stage resource scheduling optimization simulation is realized by using the conventional genetic algorithm.On the technology of the conventional genetic algorithm,an adaptive transformation operator is designed to improve the crossover and mutation of the genetic algorithm.The experimental results show that the improved genetic algorithm can significantly reduce the total completion time of the task,and has good convergence and global optimization ability.
文摘Inspired by genetic algorithm(GA),an improved genetic algorithm(IGA)is proposed.It inherits the main idea of evolutionary computing,avoids the process of coding and decoding inorder to probe the solution in the state space directly and has distributed computing version.Soit is faster and gives higher precision.Aided by IGA,a new optimization strategy for theflexibility analysis and retrofitting of existing heat exchanger networks is presented.A case studyshows that IGA has the ability of finding the global optimum with higher speed and better preci-sion.
基金Supported by the Climbing PrOgram-National Key Project for Fundamental Research in China, Grant NSC92097
文摘This paper analyzes the optimization problem of mutation probability in genetic algorithms by applying the definition of i-bit improved sub-space. Then fuzzy reasoning technique is adopted to determine the optimal mutation probability in different conditions. The superior convergence property of the new method is evaluated by applying it to two simulation examples.
基金supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme(No.294931)the National Science Foundation of China (No.51175262)+1 种基金Jiangsu Province Science Foundation for Excellent Youths(No.BK2012032)Jiangsu Province Industry-Academy-Research Grant(No.BY201220116)
文摘Nowadays,energy consumption which closely contacts with environmental impacts of manufacturing processes has been highly commented as a new productivity criterion.However,little attention has paid to the development of process planning methods that take energy consumption into account.An energy-efficient process planning model that incorporates manufacturing time and energy consumption is proposed.For solving the problem,an improved genetic algorithm method is employed to explore the optimal solution.Finally,a case study for process planning is given.The experimental result generates interesting effort,and therefore allows improving the energy efficiency of manufacturing processes in process planning.
基金National Key R&D Program of China(2016YFd01304)Postgraduate Innovation Support Project of Shijiazhuang Tiedao University(YC20035).
文摘The performance and efficiency of a baler deteriorate as a result of gearbox failure.One way to overcome this challenge is to select appropriate fault feature parameters for fault diagnosis and monitoring gearboxes.This paper proposes a fault feature selection method using an improved adaptive genetic algorithm for a baler gearbox.This method directly obtains the minimum fault feature parameter set that is most sensitive to fault features through attribute reduction.The main benefit of the improved adaptive genetic algorithm is its excellent performance in terms of the efficiency of attribute reduction without requiring prior information.Therefore,this method should be capable of timely diagnosis and monitoring.Experimental validation was performed and promising findings highlighting the relationship between diagnosis results and faults were obtained.The results indicate that when using the improved genetic algorithm to reduce 12 fault characteristic parameters to three without a priori information,100%fault diagnosis accuracy can be achieved based on these fault characteristics and the time required for fault feature parameter selection using the improved genetic algorithm is reduced by half compared to traditional methods.The proposed method provides important insights into the instant fault diagnosis and fault monitoring of mechanical devices.
基金Fund of Taishan Scholar in Shandong Province,Shandong University of Science and Technology Research Fund(No.2010KYTD101)
文摘This paper investiga tes a trajectory planning algorithm to reduce the manipulator’s working time.A t ime-optimal trajectory planning(TOTP)is conducted based on improved ad aptive genetic algorithm(IAGA)and combined with cubic triangular Bezier spline(CTBS).The CTBS based trajectory planning we did before can achieve continuous second and third derivation,hence it meets the stability requirements of the m anipulator.The working time can be greatly reduced by applying IAGA to the puma 560 trajectory planning when considering physical constraints such as angular ve locity,angular acceleration and jerk.Simulation experiments in both Matlab and ADAMS illustrate that TOTP based on IAGA can give a time optimal result with sm oothness and stability.
文摘The UWB localization problem can be mapped as an optimization problem, which can be solved by genetic algorithm. In the localization process, the traditional fitness function does not include the ranging information between tags, resulting in insufficient ranging information and limited improvement of the localization accuracy. In view of this, an improved genetic localization algorithm is proposed. First, a new fitness function is constructed, which not only includes the ranging information between the tag and the base station, but also the ranging information between the tags to ensure that the ranging information is fully utilized in the localization process. Then, the search method based on Brownian motion is adopted to ensure that the improved algorithm can speed up the convergence speed of the localization result. The simulation results show that, compared with the traditional genetic localization algorithm, the improved genetic localization algorithm can reduce the influence of the ranging error on the localization error and improve the localization performance.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan Colleges and Universities under Grant No.2016ggjs-287the Project of Science and Technology of Henan Province under Grant Nos.172102210124 and 202102210269.
文摘A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.
基金This work was supported by the National Natural Science Foundation of China(62073155,62002137,62106088,62206113)the High-End Foreign Expert Recruitment Plan(G2023144007L)the Fundamental Research Funds for the Central Universities(JUSRP221028).
文摘Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach.