The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ...Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.展开更多
The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic sys...The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic system as an encryption key. Specifically, in the image scrambling stage, the algorithm primarily uses an improved baker transform method to process the image. In the image diffusion stage, the algorithm first uses the chaotic S-box method to process the encryption key. Secondly, an exclusive OR(XOR) operation is performed on the image and the encryption key to initially diffuse the image. Finally, the image is again diffused using the method of ortho XOR. Simulation analysis shows that the algorithm can achieve good encryption effect, simple and easy implementation, and good security. In the digital image communication transmission, it has good practical value.展开更多
Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi La...Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi Lamb wave modes are mostly based on various timefrequency methods such as Wigner-Ville distribution, shorttime Fourier transform, and recently explored wavelet transform(WT). Frankly speaking, uses of these signal processing methods improve the accuracy of the arrival time extraction to a great extent relative to directly extract arrival times in time-domain from Lamb waveforms. Hilbert-Huang transform(HHT) is also an efficient way for analyzing and processing non-stationary signals. The resolving power of time and frequency is restricted from Heisenberg principle in wavelet analysis, while in HHT, the time resolving power is precise and steady, and frequency resolving power is adaptive according to signal intrinsic characteristics. Conclusion can be made that the HI-IT method is more adaptive than WT anal;/sis in ~.!~M~ zing non-stationary signals. Based on the abo~, ~tiaf method is attempted to extract arrival times from Lamb waveforms in this paper. The Lamb wave tomography images generated with arrival times from HHT method were compared with those of WT. The results show that the new method improves the quality of tomography image, which demonstrates the applicability of HHT method in extracting arrival times of Lamb waves.展开更多
The midside node sensitivity of eight-node isoparametric element in 3-D BEM is investigated. The paper points out that the suggestion, based upon which the midside nodes should be located in the middle third of distan...The midside node sensitivity of eight-node isoparametric element in 3-D BEM is investigated. The paper points out that the suggestion, based upon which the midside nodes should be located in the middle third of distance between the adjacent corners, should be followed even more strictly for the conventional isoparametric transformation (CIT) in BEM as that in FEM. A new coordinate transformation relation has been put forward to solve the singular integral problem. The computation is carried to two cases: a cubic body subjected to tensile stress and pure bending. The numerical results show that the improved isoparametric transformation (IIT) is easier and more flexible to practice.展开更多
Genetic transformation is widely used to improve target traits and to study gene function in wheat.However,transformation efficiency depends on the physiological status of the recipient genotype and that is affected b...Genetic transformation is widely used to improve target traits and to study gene function in wheat.However,transformation efficiency depends on the physiological status of the recipient genotype and that is affected by several factors including powdery mildew(PM)infection.The widely used recipient variety Fielder is very susceptible to PM.Therefore,it would be beneficial to develop PM resistant derivatives with high regeneration ability for use in genetic transformation.In the present study PM resistant lines CB037 and Pm97033 carrying genes Pm21 and PmV,respectively,were backcrossed to Fielder with selection for PM resistance.Five lines,NT89,NT90,NT154,and WT48 with Pm21 and line FL347 with PmV were developed,identified by molecular markers and genomic in situ hybridization(GISH)or fluorescent in situ hybridization(FISH),and further subjected to detailed assessment of agronomic traits and regeneration ability following genetic transformation capacity.Lines FL347,WT48,NT89 and NT154 assessed as being equal to,or superior,to Fielder in regeneration and transformation ability are recommended as suitable materials for the replacement of Fielder for wheat gene transfer and genome editing study.展开更多
The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforeh...The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforehand.This was first systematically implemented by the empirical mode decomposition(EMD)in the Hilbert-Huang transform,which can provide a time-frequency representation of the signals.The EMD,however,has limitations in distinguishing different components in narrowband signals commonly found in free-decay vibration signals.In this study,a technique for decompo- sing components in narrowband signals based on waves' beating phenomena is proposed to improve the EMD,in which the time scale structure of the signal is unveiled by the Hilbert transform as a result of wave beating,the order of component ex- traction is reversed from that in the EMD and the end effect is confined.The proposed technique is verified by performing the component decomposition of a simulated signal and a free decay signal actually measured in an instrumented bridge structure.In addition,the adaptability of the technique to time-variant dynamic systems is demonstrated with a simulated time-variant MDOF system.展开更多
The chirplet transform is the generalization form of fast Fourier transform , short-time Fourier transform, and wavelet transform. It has the most flexible time frequency window and successfully used in practices. How...The chirplet transform is the generalization form of fast Fourier transform , short-time Fourier transform, and wavelet transform. It has the most flexible time frequency window and successfully used in practices. However, the chirplet transform has not inherent inverse transform, and can not overcome the signal reconstructing problem. In this paper, we proposed the improved chirplet transform (ICT) and constructed the inverse ICT. Finally, by simulating the harmonic voltages, The power of the improved chirplet transform are illustrated for harmonic detection. The contours clearly showed the harmonic occurrence time and harmonic duration.展开更多
Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(C...Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.展开更多
The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to ...The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.展开更多
The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficul...The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficult to implement. This paper proposes an algorithm that combines the improved Hough transform and image comparison to identify the damage or loss of the manhole covers in complicated surface conditions by using existing urban road video images. Focusing on the pre-processed images, the edge contour tracking algorithm is applied to find all of the edges. Then with the improved Hough transformation, color recognition and image matching algorithm, the manhole cover area is found and the change rates of the manhole cover area are calculated. Based on the threshold of the change rates, it can be determined whether there is potential damage or loss in the manhole cover. Compared with the traditional Hough transform, the proposed method can effectively improve the processing speed and reduce invalid sampling and accumulation. Experimental results indicate that the proposed algorithm has the functions of effective positioning and early warning in the conditions of complex background, different perspectives, and different videoing time and conditions, such as when the target is partially covered.展开更多
Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficien...Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.展开更多
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic...The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.展开更多
Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by N...Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.展开更多
Acoustic Emission(AE)waveforms contain information on microscopic structural features that can be related with damage of coal rock masses.In this paper,the Hilbert-Huang transform(HHT)method is used to obtain detailed...Acoustic Emission(AE)waveforms contain information on microscopic structural features that can be related with damage of coal rock masses.In this paper,the Hilbert-Huang transform(HHT)method is used to obtain detailed structural characteristics of coal rock masses associated with damage,at different loading stages,from the analyses of the characteristics of AE waveforms.The results show that the HHT method can be used to decompose the target waveform into multiple intrinsic mode function(IMF)components,with the energy mainly concentrated in the c1−c4 IMF components,where the c1 component has the highest frequency and the largest amount of energy.As the loading continues,the proportion of energy occupied by the low-frequency IMF component shows an increasing trend.In the initial compaction stage,the Hilbert marginal spectrum is mainly concentrated in the low frequency range of 0−40 kHz.The plastic deformation stage is associated to energy accumulation in the frequency range of 0−25 kHz and 200−350 kHz,while the instability damage stage is mainly concentrated in the frequency range of 0−25 kHz.At 20 kHz,the instability damage reaches its maximum value.There is a relatively clear instantaneous energy peak at each stage,albeit being more distinct at the beginning and at the end of the compaction phase.Since the effective duration of the waveform is short,its resulting energy is small,and so there is a relatively high value from the instantaneous energy peak.The waveform lasts a relatively long time after the peak that coincides with failure,which is the period where the waveform reaches its maximum energy level.The Hilbert three-dimensional energy spectrum is generally zero in the region where the real energy is zero.In addition,its energy spectrum is intermittent rather than continuous.It is therefore consistent with the characteristics of the several dynamic ranges mentioned above,and it indicates more clearly the low-frequency energy concentration in the critical stage of instability failure.This study well reflects the response law of geophysical signals in the process of coal rock instability and failure,providing a basis for monitoring coal rock dynamic disasters.展开更多
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.
基金funded by the National Natural Science Foundation of China,grant number 61302188.
文摘Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.
基金supported by the National Natural Science Foundation of China (Grant No. 61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund,China (Grant No. MMJJ20170203)+3 种基金the Liaoning Provincial Science and Technology Innovation Leading Talents Program Project,China (Grant No. XLYC1802013)the Key Research and Development Projects of Liaoning Province,China (Grant No. 2019020105-JH2/103)the Jinan City ‘20 universities’ Funding Projects Introducing Innovation Team Program,China (Grant No. 2019GXRC031)the “Double First-rate”Construction Project (“Innovation Project”),China (Grant No. SSCXXM013)。
文摘The algorithm is an image encryption algorithm based on the improved baker transformation and chaotic substitution box(S-box). It mainly uses the initial values and parameters of a one-dimensional logistic chaotic system as an encryption key. Specifically, in the image scrambling stage, the algorithm primarily uses an improved baker transform method to process the image. In the image diffusion stage, the algorithm first uses the chaotic S-box method to process the encryption key. Secondly, an exclusive OR(XOR) operation is performed on the image and the encryption key to initially diffuse the image. Finally, the image is again diffused using the method of ortho XOR. Simulation analysis shows that the algorithm can achieve good encryption effect, simple and easy implementation, and good security. In the digital image communication transmission, it has good practical value.
基金National Natural Science Foundation of China(No.10504020,10874110)Shanghai Leading Academic Discipline Project,China(No.S30108)Science and Technology Commission of Shanghai Municipality,China(No.08DZ2231100)
文摘Travel time Lamb wave tomography has been shown to be an effective nondestructive evaluation (NDE) technique for plate-like structures. The methods used previously to extract arrival times of the fastest or multi Lamb wave modes are mostly based on various timefrequency methods such as Wigner-Ville distribution, shorttime Fourier transform, and recently explored wavelet transform(WT). Frankly speaking, uses of these signal processing methods improve the accuracy of the arrival time extraction to a great extent relative to directly extract arrival times in time-domain from Lamb waveforms. Hilbert-Huang transform(HHT) is also an efficient way for analyzing and processing non-stationary signals. The resolving power of time and frequency is restricted from Heisenberg principle in wavelet analysis, while in HHT, the time resolving power is precise and steady, and frequency resolving power is adaptive according to signal intrinsic characteristics. Conclusion can be made that the HI-IT method is more adaptive than WT anal;/sis in ~.!~M~ zing non-stationary signals. Based on the abo~, ~tiaf method is attempted to extract arrival times from Lamb waveforms in this paper. The Lamb wave tomography images generated with arrival times from HHT method were compared with those of WT. The results show that the new method improves the quality of tomography image, which demonstrates the applicability of HHT method in extracting arrival times of Lamb waves.
文摘The midside node sensitivity of eight-node isoparametric element in 3-D BEM is investigated. The paper points out that the suggestion, based upon which the midside nodes should be located in the middle third of distance between the adjacent corners, should be followed even more strictly for the conventional isoparametric transformation (CIT) in BEM as that in FEM. A new coordinate transformation relation has been put forward to solve the singular integral problem. The computation is carried to two cases: a cubic body subjected to tensile stress and pure bending. The numerical results show that the improved isoparametric transformation (IIT) is easier and more flexible to practice.
基金supported by the National Natural Science Foundation of China(31971945).
文摘Genetic transformation is widely used to improve target traits and to study gene function in wheat.However,transformation efficiency depends on the physiological status of the recipient genotype and that is affected by several factors including powdery mildew(PM)infection.The widely used recipient variety Fielder is very susceptible to PM.Therefore,it would be beneficial to develop PM resistant derivatives with high regeneration ability for use in genetic transformation.In the present study PM resistant lines CB037 and Pm97033 carrying genes Pm21 and PmV,respectively,were backcrossed to Fielder with selection for PM resistance.Five lines,NT89,NT90,NT154,and WT48 with Pm21 and line FL347 with PmV were developed,identified by molecular markers and genomic in situ hybridization(GISH)or fluorescent in situ hybridization(FISH),and further subjected to detailed assessment of agronomic traits and regeneration ability following genetic transformation capacity.Lines FL347,WT48,NT89 and NT154 assessed as being equal to,or superior,to Fielder in regeneration and transformation ability are recommended as suitable materials for the replacement of Fielder for wheat gene transfer and genome editing study.
文摘The Hilbert-based time-frequency analysis has promising capacity to reveal the time-variant behaviors of a sys- tem.To admit well-behaved Hilbert transforms,component decomposition of signals must be performed beforehand.This was first systematically implemented by the empirical mode decomposition(EMD)in the Hilbert-Huang transform,which can provide a time-frequency representation of the signals.The EMD,however,has limitations in distinguishing different components in narrowband signals commonly found in free-decay vibration signals.In this study,a technique for decompo- sing components in narrowband signals based on waves' beating phenomena is proposed to improve the EMD,in which the time scale structure of the signal is unveiled by the Hilbert transform as a result of wave beating,the order of component ex- traction is reversed from that in the EMD and the end effect is confined.The proposed technique is verified by performing the component decomposition of a simulated signal and a free decay signal actually measured in an instrumented bridge structure.In addition,the adaptability of the technique to time-variant dynamic systems is demonstrated with a simulated time-variant MDOF system.
文摘The chirplet transform is the generalization form of fast Fourier transform , short-time Fourier transform, and wavelet transform. It has the most flexible time frequency window and successfully used in practices. However, the chirplet transform has not inherent inverse transform, and can not overcome the signal reconstructing problem. In this paper, we proposed the improved chirplet transform (ICT) and constructed the inverse ICT. Finally, by simulating the harmonic voltages, The power of the improved chirplet transform are illustrated for harmonic detection. The contours clearly showed the harmonic occurrence time and harmonic duration.
基金The National Basic Research Program (973 Program)grant number: 2003CB517108
文摘Objective: To study the characteristics of pulse tracings in CHD, and objectively evaluate the significance of pulse signal in diagnosis and appreciation of therapeutic effect in patients with coronary heart disease(CHD), and accordingly provide with theoretic proofs for developing non-invasive technique of pulse diagnosis. Methods: By using the pulse detection system, pulse graphs in CHD patients, patients without CHD and "health" adults were collected and compared. Then characters of the pulse signal were analyzed with Hilbert-Huang transformation routine (HHT) and time-domain method respectively. Results: There existed characteristic change in pulse graph in CHD. ① h1,h3,h4,h3/h1,t,t5/t4 in time domain parameters of pulse graph increased and w1 was widened. ② 44% of C2 wave in HHT display showed chaotic and disorderly wave and irregularly wave amplitude in CHD. And 72% of C5 Wave exhibited in irregular wave with average wave amplitude over 10 gram-forces. These changes were significantly different from health adults. Conclusion: Characteristic wave of pulse graph extracted with methods of time domain or HHT routine might be considered as proofs for diagnosis and differentiation in CHD. Our researches prognosticate that pulse diagnosis can be used as an ancillary determination in occurrence of CHD for reasons of the advantage of convenient operation and non-invasion.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51504085)the Natural Science Foundation for Returness of Heilongjiang Province of China(Grant No.LC2017026).
文摘The original fault data of oil immersed transformer often contains a large number of unnecessary attributes,which greatly increases the elapsed time of the algorithm and reduces the classification accuracy,leading to the rise of the diagnosis error rate.Therefore,in order to obtain high quality oil immersed transformer fault attribute data sets,an improved imperialist competitive algorithm was proposed to optimize the rough set to discretize the original fault data set and the attribute reduction.The feasibility of the proposed algorithm was verified by experiments and compared with other intelligent algorithms.Results show that the algorithm was stable at the 27th iteration with a reduction rate of 56.25%and a reduction accuracy of 98%.By using BP neural network to classify the reduction results,the accuracy was 86.25%,and the overall effect was better than those of the original data and other algorithms.Hence,the proposed method is effective for fault attribute reduction of oil immersed transformer.
基金The Natural Science Fundation of Education Department of Anhui Province(No.KJ2012B051)
文摘The damage or loss of urban road manhole covers may cause great risk to residents' lives and property if they cannot be discovered in time. Most existing research recommendations for solving this problem are difficult to implement. This paper proposes an algorithm that combines the improved Hough transform and image comparison to identify the damage or loss of the manhole covers in complicated surface conditions by using existing urban road video images. Focusing on the pre-processed images, the edge contour tracking algorithm is applied to find all of the edges. Then with the improved Hough transformation, color recognition and image matching algorithm, the manhole cover area is found and the change rates of the manhole cover area are calculated. Based on the threshold of the change rates, it can be determined whether there is potential damage or loss in the manhole cover. Compared with the traditional Hough transform, the proposed method can effectively improve the processing speed and reduce invalid sampling and accumulation. Experimental results indicate that the proposed algorithm has the functions of effective positioning and early warning in the conditions of complex background, different perspectives, and different videoing time and conditions, such as when the target is partially covered.
基金supported by the China National Funds for Distinguished Young Scientists(61025006)
文摘Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.
基金Funded by the Project of China Geological Survey (No.1212010916040)the Sichuan Science and Technology Program (No.2017JY0051)the Sichuan Science and Technology Program (No.2018GZ0200)
文摘The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties.
基金This study is supported by the National Natural Science Foundation of China(NSFC)under contract Nos 49790010,40076010 and 49634140,National Key Basic Research and Development Plan in China under contract No.G1999043701)and the OCEAN-863 Project of China.
文摘Hilbert-Huang Transform (HHT) is a newly developed powerful method for nonlinear and non-stationary time series analysis. The empirical mode decomposition is the key part of HHT, while its algorithm was protected by NASA as a US patent, which limits the wide application among the scientific community. Two approaches, mirror periodic and extrema extending methods, have been developed for handling the end effects of empirical mode decomposition. The implementation of the HHT is realized in detail to widen the application. The detailed comparison of the results from two methods with that from Huang et al. (1998, 1999), and the comparison between two methods are presented. Generally, both methods reproduce faithful results as those of Huang et al. For mirror periodic method (MPM), the data are extended once forever. Ideally, it is a way for handling the end effects of the HHT, especially for the signal that has symmetric waveform. The extrema extending method (EEM) behaves as good as MPM, and it is better than MPM for the signal that has strong asymmetric waveform. However, it has to perform extrema envelope extending in every shifting process.
基金Projects(51904167, 51474134, 51774194) supported by the National Natural Science Foundation of ChinaProject(SKLCRSM19KF008) supported by the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining,CUMT,China+5 种基金Project(cstc2019jcyj-bsh0041) supported by the Natural Science Foundation of Chongqing,ChinaProject(2011DA105287-BH201903) supported by the Postdoctoral ScienceFunded by State Key Laboratory of Coal Mine Disaster Dynamics and Control,ChinaProject(2019SDZY034-2) supported by the Key R&D plan of Shandong Province,ChinaProject(2020M670781) supported by the China Postdoctoral Science FoundationProject supported by the Taishan Scholars ProjectProject supported by the Taishan Scholar Talent Team Support Plan for Advantaged&Unique Discipline Areas,China
文摘Acoustic Emission(AE)waveforms contain information on microscopic structural features that can be related with damage of coal rock masses.In this paper,the Hilbert-Huang transform(HHT)method is used to obtain detailed structural characteristics of coal rock masses associated with damage,at different loading stages,from the analyses of the characteristics of AE waveforms.The results show that the HHT method can be used to decompose the target waveform into multiple intrinsic mode function(IMF)components,with the energy mainly concentrated in the c1−c4 IMF components,where the c1 component has the highest frequency and the largest amount of energy.As the loading continues,the proportion of energy occupied by the low-frequency IMF component shows an increasing trend.In the initial compaction stage,the Hilbert marginal spectrum is mainly concentrated in the low frequency range of 0−40 kHz.The plastic deformation stage is associated to energy accumulation in the frequency range of 0−25 kHz and 200−350 kHz,while the instability damage stage is mainly concentrated in the frequency range of 0−25 kHz.At 20 kHz,the instability damage reaches its maximum value.There is a relatively clear instantaneous energy peak at each stage,albeit being more distinct at the beginning and at the end of the compaction phase.Since the effective duration of the waveform is short,its resulting energy is small,and so there is a relatively high value from the instantaneous energy peak.The waveform lasts a relatively long time after the peak that coincides with failure,which is the period where the waveform reaches its maximum energy level.The Hilbert three-dimensional energy spectrum is generally zero in the region where the real energy is zero.In addition,its energy spectrum is intermittent rather than continuous.It is therefore consistent with the characteristics of the several dynamic ranges mentioned above,and it indicates more clearly the low-frequency energy concentration in the critical stage of instability failure.This study well reflects the response law of geophysical signals in the process of coal rock instability and failure,providing a basis for monitoring coal rock dynamic disasters.