期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于改进型LeNet-5的工业机器人工件自动识别研究 被引量:4
1
作者 刘东来 崔亚飞 +3 位作者 罗辉 邓子林 秦润华 秦长江 《制造技术与机床》 北大核心 2021年第8期103-107,共5页
针对机器人关节工件组装生产过程中,工件种类多、产量大、人工分拣与装配耗时费力等问题,在经典LeNet-5模型基础上,提出一种改进型LeNet-5网络,该网络输入图像的大小修改为32×32,卷积层增加至4层,激励函数改用Leaky ReLU以防止过... 针对机器人关节工件组装生产过程中,工件种类多、产量大、人工分拣与装配耗时费力等问题,在经典LeNet-5模型基础上,提出一种改进型LeNet-5网络,该网络输入图像的大小修改为32×32,卷积层增加至4层,激励函数改用Leaky ReLU以防止过拟合。同时,将改进型LeNet-5与经典LeNet-5、GoogLeNet模型进行训练、测试与对比,试验结果表明,改进型LeNet-5效果最好,测试集的准确率达到98.32%、曲线下降面积AUC为0.9163,识别一个待装配工件仅需约0.016 s,满足工厂工业机器人实时性检测要求,为类似的识别提供了有效参考,具有较高的应用价值。 展开更多
关键词 工件识别 改进型lenet-5 卷积神经网络
下载PDF
基于改进型LeNet-5的苹果自动分级方法 被引量:38
2
作者 王立扬 张瑜 +1 位作者 沈群 薛勇 《中国农机化学报》 北大核心 2020年第7期105-110,共6页
针对目前传统机器学习对苹果分级的局限性,改进经典卷积神经网络LeNet-5模型以提高分级准确率。试验在原基础上添加卷积层至4层以加深网络深度,改用LeakyReLU激励函数并加入Dropout层防止过拟合,修改输入图像大小为32×32×3。... 针对目前传统机器学习对苹果分级的局限性,改进经典卷积神经网络LeNet-5模型以提高分级准确率。试验在原基础上添加卷积层至4层以加深网络深度,改用LeakyReLU激励函数并加入Dropout层防止过拟合,修改输入图像大小为32×32×3。同时将此与GoogLeNet迁移模型、初始LeNet-5模型、传统机器学习进行对比。试验对不同等级的红富士苹果进行训练与测试,发现改进后的LeNet-5效果最好,测试集准确率达98.37%、AUC值为0.9075,识别一个苹果仅需0.12 s,能够满足工厂自动化分级的需求。综上,改进型LeNet-5模型可用于苹果的高效分级。 展开更多
关键词 苹果分级 改进型lenet-5 卷积神经网络 深度学习
下载PDF
基于改进LeNet-5的压印字符识别 被引量:1
3
作者 汪志成 何坚强 +1 位作者 翁嘉鑫 苗荣 《计算机仿真》 北大核心 2022年第2期441-446,共6页
针对传统的图像识别算法在压印字符识别领域存在识别精度低、速度较慢的问题,提出了一种基于LeNet-5压印字符识别方法。与传统的LeNet-5不同,在文中网络各卷积层中采用小尺寸卷积核,以提取更多的特征并加快模型的训练速度;使用Inceptio... 针对传统的图像识别算法在压印字符识别领域存在识别精度低、速度较慢的问题,提出了一种基于LeNet-5压印字符识别方法。与传统的LeNet-5不同,在文中网络各卷积层中采用小尺寸卷积核,以提取更多的特征并加快模型的训练速度;使用InceptionV2卷积模块取代C5全连接层,可加深网络宽度,从而提高网络的识别精度;放弃全连接层F6,改用全局平均池化层,并且选用性能优越的Relu函数作为激活函数,以便减少训练参数,提高网络的训练速度。通过实验发现,文中模型的识别精度达到98.57%,与传统LeNet-5模型以及BP神经网络相比识别精度分别提高3%和4%,证明文中模型在压印字符的识别上拥有更大的优势。 展开更多
关键词 压印字符识别 改进模型 卷积神经网络 识别精度 收敛速度
下载PDF
An Improved LeNet-5 Model Based on Encrypted Data
4
作者 Huanhuan Ni Yiliang Han +1 位作者 Xiaowei Duan Guohui Yang 《国际计算机前沿大会会议论文集》 2021年第2期166-178,共13页
In recent years,the problem of privacy leakage has attracted increasing attentions.Therefore,machine learning privacy protection becomes crucial research topic.In this paper,the Paillier homomorphic encryption algorit... In recent years,the problem of privacy leakage has attracted increasing attentions.Therefore,machine learning privacy protection becomes crucial research topic.In this paper,the Paillier homomorphic encryption algorithm is proposed to protect the privacy data.The original LeNet-5 convolutional neural network model was first improved.Then the activation function was modified and the C5 layer was removed to reduce the number of model parameters and improve the operation efficiency.Finally,by mapping the operation of each layer in the convolutional neural network from the plaintext domain to the ciphertext domain,an improved LeNet-5 model that can run on encrypted data was constructed.The purpose of using machine learning algorithmwas realized and privacywas ensured at the same time.The analysis shows that the model is feasible and the efficiency is improved. 展开更多
关键词 Paillier homomorphic encryption lenet-5 model convolutional neural network Privacy protection
原文传递
卷积神经网络在车牌识别中的应用研究 被引量:24
5
作者 刘华春 《计算机技术与发展》 2019年第4期128-132,共5页
为了改善传统车牌识别方法中过分依赖车牌特征和鲁棒性不强等问题,将具有良好图像识别性能的卷积神经网络LeNet-5模型引入到车牌字符识别中,并对其结构进行改进以满足需要。设计了2个网络分别进行汉字和数字/字母识别,将输出层类别由10... 为了改善传统车牌识别方法中过分依赖车牌特征和鲁棒性不强等问题,将具有良好图像识别性能的卷积神经网络LeNet-5模型引入到车牌字符识别中,并对其结构进行改进以满足需要。设计了2个网络分别进行汉字和数字/字母识别,将输出层类别由10增加到31和34;C_5卷积层的特征面数目增加到480,输入图像像素增加到64×64。对改进后的网络进行了实验,并分别与3层BP神经网络和支持向量机(SVM)进行对比测试。实验结果表明,该卷积神经网络避免了传统车牌字符识别方法中复杂的特征提取,增强了鲁棒性,提高了准确率。改进后的LeNet-5相比BP神经网络在识别准确率上可提高约6%,识别速度也更快;与SVM相比较,汉字分类准确率可以提高约7%,字符/数字准确率可以提高约4%。 展开更多
关键词 车牌识别 卷积神经网络 支持向量机 改进lenet-5卷积网络 深度学习
下载PDF
基于深度学习的纠错编码方式识别 被引量:2
6
作者 刘洁 刘凯 《电子测量技术》 2019年第16期154-158,共5页
引入卷积神经网络(CNN)用于解决信道编码方式识别问题,提出了一种基于改进LeNet-5网络的编码方式自动识别方法,该方法将接收机端接收到的信号进行预处理,预处理之后的数据作为深度卷积神经网络(DCNN)的输入,根据训练好的模型对时域编码... 引入卷积神经网络(CNN)用于解决信道编码方式识别问题,提出了一种基于改进LeNet-5网络的编码方式自动识别方法,该方法将接收机端接收到的信号进行预处理,预处理之后的数据作为深度卷积神经网络(DCNN)的输入,根据训练好的模型对时域编码信号进行直接特征提取与识别分类。针对ldpc码、卷积码、汉明码三种典型的编码方式进行了仿真实验,信噪比大于8时,编码方式的识别准确率大于80%。不同码率的卷积码之间,信噪比大于8时,识别准确率可以达到95%以上。实验结果表明,基于DCNN的时域编码信号识别是可行的。 展开更多
关键词 信道编码识别 卷积神经网络 改进lenet-5网络 特征提取
下载PDF
基于深度学习的板栗分级方法研究
7
作者 王培福 孙一丹 +2 位作者 鹿子涵 王伟 陈晓峰 《湖北农业科学》 2022年第21期168-175,共8页
板栗品质分级对板栗产品的标准化和均一性有重要影响,精确的分类有助于板栗商品标准化,发挥出各等级板栗的最大价值。针对中国板栗分级分类大多依靠机器与人工,存在效率低、准确度低等问题,提出利用深度学习方法实现板栗分级分类的自动... 板栗品质分级对板栗产品的标准化和均一性有重要影响,精确的分类有助于板栗商品标准化,发挥出各等级板栗的最大价值。针对中国板栗分级分类大多依靠机器与人工,存在效率低、准确度低等问题,提出利用深度学习方法实现板栗分级分类的自动化与智能化。对经典卷积神经网络LeNet-5模型进行了改进,增加5层卷积层和2层池化层以加深网络,从而更准确地提取板栗特征,同时输入层修改为图像大小256×256的彩色图像;激活函数改进为Leaky ReLu,并加入Dropout算法缓解过拟合现象;使用Adam作为优化器对网络参数进行优化。将改进后的LeNet-5模型与初始LeNet-5模型、AlexNet和VGG16模型进行对比,发现改进后的LeNet-5模型在测试集上识别平均精确率为99.68%、准确率为99.34%、召回率为99.35%,优于其他3种模型,且识别1个样本用时仅0.19 s,改进后的LeNet-5模型可以实现对板栗良好的分级分类,满足工厂对板栗自动分级的需要。 展开更多
关键词 板栗分级 深度学习 卷积神经网络 改进lenet-5模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部