期刊文献+
共找到2,577篇文章
< 1 2 129 >
每页显示 20 50 100
An improved mean shift tracking algorithm based on double weighted color histogram
1
作者 金永 王振 +1 位作者 王召巴 陈友兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第2期171-175,共5页
In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weake... In practical application,mean shift tracking algorithm is easy to generate tracking drift when the target and the background have similar color distribution.Based on the mean shift algorithm,a kind of background weaken weight is proposed in the paper firstly.Combining with the object center weight based on the kernel function,the problem of interference of the similar color background can be solved.And then,a model updating strategy is presented to improve the tracking robustness on the influence of occlusion,illumination,deformation and so on.With the test on the sequence of Tiger,the proposed approach provides better performance than the original mean shift tracking algorithm. 展开更多
关键词 object tracking mean shift color histogram model updating
下载PDF
Improved mean-shift-based pitch determination
2
作者 吴红卫 吴镇扬 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期494-499,共6页
The underlying principle of pitch determination based on the mean shift algorithm is studied, and the cause of pitch error propagation in the original pseudo code is analyzed. The problem of error propagation is solve... The underlying principle of pitch determination based on the mean shift algorithm is studied, and the cause of pitch error propagation in the original pseudo code is analyzed. The problem of error propagation is solved by choosing an appropriate initial pitch candidate F00. The theoretical choice guideline in a pitch epoch is obtained as ensuring the true pitch F0 satisfying F00/2 〈 F0 〈 3F00/2. The validity of the choice guideline is verified by the F00 experiment. Meanwhile, the algorithm is extended to the pitch determination in the noisy case and compared with the method of subharmonic-to-harmonic ratio (SHR). The experimental results show that the improved algorithm bears comparison with SHR and it runs much faster than SHR. 展开更多
关键词 PITCH pitch determination mean shift algorithm
下载PDF
Color image segmentation using mean shift and improved ant clustering 被引量:3
3
作者 刘玲星 谭冠政 M.Sami Soliman 《Journal of Central South University》 SCIE EI CAS 2012年第4期1040-1048,共9页
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ... To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability. 展开更多
关键词 color image segmentation improved ant clustering graph partition mean shift
下载PDF
Segmentation of High Spatial Resolution Remote Sensing Images of Mountainous Areas Based on the Improved Mean Shift Algorithm 被引量:3
4
作者 LU Heng LIU Chao +1 位作者 LI Nai-wen GUO Jia-wei 《Journal of Mountain Science》 SCIE CSCD 2015年第3期671-681,共11页
Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we p... Using conventional Mean Shift Algorithm to segment high spatial resolution Remote sensing images of mountainous areas usually leads to an unsatisfactory result, due to its rich texture information. In this paper, we propose an improved Mean Shift Algorithm in consideration of the characteristics of these images. First, images were classified into several homogeneous color regions and texture regions by conducting variance detection on the color space. Next, each homogeneous color region was directly segmented to generate the preliminary results by applying the Mean Shift Algorithm. For each texture region, we conduct a high-dimensional feature space by extracting information such as color, texture and shape comprehensively, and work out a proper bandwidth according to the normalized distribution density. Then the bandwidth variable Mean Shift Algorithm was applied to obtain segmentation results by conducting the pattern classification in feature space. Last, the final results were obtained by merging these regions by means of the constructed cost functions and removing the oversegmented regions from the merged regions. It has been experimentally segmented on the high spatial resolution remote sensing images collected by Quickbird and Unmanned Aerial Vehicle(UAV). We put forward an approach to evaluate the segmentation results by using the segmentation matching index(SMI). This takes into consideration both the area and the spectrum. The experimental results suggest that the improved Mean Shift Algorithm outperforms the conventional one in terms of accuracy of segmentation. 展开更多
关键词 mean shift Image segmentation Regionmerging UAV image Quickbird image
下载PDF
Mean Shift跟踪算法创新实验项目设计
5
作者 王辉 王雪莹 于立君 《实验室科学》 2024年第1期12-16,共5页
视频跟踪算法是计算机视觉实践课程中比较受关注的实验项目。针对突变情况下传统Mean Shift跟踪算法无法实时准确跟踪的问题,设计了基于模板更新和线性预估的Mean Shift跟踪算法创新实验项目。在模板更新策略下,引入背景模板,通过将原... 视频跟踪算法是计算机视觉实践课程中比较受关注的实验项目。针对突变情况下传统Mean Shift跟踪算法无法实时准确跟踪的问题,设计了基于模板更新和线性预估的Mean Shift跟踪算法创新实验项目。在模板更新策略下,引入背景模板,通过将原目标模板和背景模板与设定的阈值进行比较来对干扰因素进行判定,当干扰因素判定目标受到遮挡时,引入线性预估方程进行目标位置预测,有效解决目标在遮挡情况下跟踪丢失的问题。通过对测试视频的跟踪效果和性能进行对比分析,验证了算法在突变情况下相较于传统算法具有更好的抗干扰能力。以算法创新设计为核心,通过开放性创新实验项目的选题、设计、答辩、反馈的闭环实验过程,有效提高了学生算法创新设计能力。 展开更多
关键词 mean shift跟踪算法 模板更新 线性预估 抗干扰
下载PDF
基于自适应核带宽度Mean Shift算法的单木识别研究
6
作者 马秀 陈伟 +2 位作者 徐雁南 张舒 王国宏 《森林工程》 北大核心 2024年第2期92-101,126,共11页
为提高多树种森林中单木识别的精度,利用机载激光雷达点云数据作为研究对象,提出一种基于自适应核带宽度Mean Shift算法的单木识别方法。该方法先采用直方图分析法分离树冠点云和冠层下点云,再采用基于二维增量网格投影的区域生长法,估... 为提高多树种森林中单木识别的精度,利用机载激光雷达点云数据作为研究对象,提出一种基于自适应核带宽度Mean Shift算法的单木识别方法。该方法先采用直方图分析法分离树冠点云和冠层下点云,再采用基于二维增量网格投影的区域生长法,估算单木冠幅有效半径,然后以单木冠幅有效半径作为自适应核带宽度,对树冠点云进行自适应Mean Shift聚类分析,得到树冠点簇,最后采用包络盒方法根据树冠点簇和树干点云的空间关系识别单木。试验结果表明,检测树与实际树的位置、树冠形态近似一致,单木召回率达到86.1%,准确率达到91.5%,高于2个对比试验的结果。研究证明设置的自适应核带宽度能够自动调整以反映局部树冠的实际大小,在多树种森林的单木识别中表现良好。 展开更多
关键词 激光雷达 单木识别 mean shift算法 核带宽度 自适应
下载PDF
Traffic Anomaly DetectionMethod Based on Improved GRU and EFMS-Kmeans Clustering 被引量:3
7
作者 Yonghua Huo Yi Cao +3 位作者 Zhihao Wang Yu Yan Zhongdi Ge Yang Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期1053-1091,共39页
In recent years,with the continuous development of information technology and the rapid growth of network scale,network monitoring and management become more and more important.Network traffic is an important part of ... In recent years,with the continuous development of information technology and the rapid growth of network scale,network monitoring and management become more and more important.Network traffic is an important part of network state.In order to ensure the normal operation of the network,improve the availability of the network,find network faults in time and deal with network attacks;it is necessary to detect the abnormal traffic in the network.Abnormal traffic detection is of great significance in the actual network management.Therefore,in order to improve the accuracy and efficiency of network traffic anomaly detection,this paper proposes a comprehensive anomaly detection method based on improved GRU traffic prediction and improved K-means clustering,and cascade the traffic prediction and clustering to achieve the purpose of anomaly detection.Firstly,an improved highway-GRU algorithm HS-GRU(An improved Gate Recurrent Unit neural network based on Highway network and STL algorithm,HS-GRU)is proposed,which combines STL decomposition algorithm with highway GRU neural network and uses this improved algorithm to predict traffic.And then,we proposed the EFMS-Kmeans algorithm(An improved clustering algorithmthat combined Mean Shift algorithmbased on electrostatic force with K-means clustering)to solve the shortcoming of the traditional K-means clustering which cannot automatically determine the number of clustering.The sum of the squared errors(SSE)method and the contour coefficient method were used to double test the clustering effect.After determining the clustering center,the potential energy gradient was directly used for anomaly detection by using the threshold method,which considered the local characteristics of the data and ensured the accuracy of anomaly detection.The simulation results show that the anomaly detection algorithm based on HS-GRU and EFMS-Kmeans clustering proposed in this paper can effectively improve the accuracy of flow anomaly detection and has important application value. 展开更多
关键词 Anomaly detection gated recurrent unit clustering mean shift K-meanS
下载PDF
An Improved Kernel K-Mean Cluster Method and Its Application in Fault Diagnosis of Roller Bearing 被引量:2
8
作者 Ling-Li Jiang Yu-Xiang Cao +1 位作者 Hua-Kui Yin Kong-Shu Deng 《Engineering(科研)》 2013年第1期44-49,共6页
For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the o... For the kernel K-mean cluster method is run in an implicit feature space, the initial and iterative cluster centers cannot be defined explicitly. Against the deficiency of the initial cluster centers selected in the original space discretionarily in the existing methods, this paper proposes a new method for ensuring the clustering center that virtual clustering centers are defined in the feature space by the original classification as the initial cluster centers and the iteration clustering centers are ensured by the further virtual classification. The improved method is used for fault diagnosis of roller bearing that achieves a good cluster and diagnosis result, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 improved KERNEL K-mean CLUSTER FAULT Diagnosis ROLLER BEARING
下载PDF
Improved Ligand-Field Calculation of Energy Spectrum and R-Line Thermal Shift of MgO:Cr^3+
9
作者 ZHANG Zheng-Jie MA Dong-Ping 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第5期937-943,共7页
Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved... Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, the R-line, t^3 2^2 T1 lines, t^2 2(^3 T1)e^4 T2, and t^2 2(^3T1)e^4T1 bands, ground-state g factor, four strain-induced level- splittings, and R-line thermal shift of MgO:Cr^3+ have been calculated. The results are in very good agreement with the experimental data. It is found that for MgO:Cr^3+, the contributions due to electron-phonon interaction (EPI) come from the first-order term. In thermal shift of R-line of MgO:Cr^3+, the temperature-dependent contribution due to EPI is dominant. 展开更多
关键词 improved ligand-field theory electron-phonon interaction energy spectrum strain-induced splitting thermal shift g factor
下载PDF
Polarimetric Meteorological Satellite Data Processing Software Classification Based on Principal Component Analysis and Improved K-Means Algorithm 被引量:1
10
作者 Manyun Lin Xiangang Zhao +3 位作者 Cunqun Fan Lizi Xie Lan Wei Peng Guo 《Journal of Geoscience and Environment Protection》 2017年第7期39-48,共10页
With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In th... With the increasing variety of application software of meteorological satellite ground system, how to provide reasonable hardware resources and improve the efficiency of software is paid more and more attention. In this paper, a set of software classification method based on software operating characteristics is proposed. The method uses software run-time resource consumption to describe the software running characteristics. Firstly, principal component analysis (PCA) is used to reduce the dimension of software running feature data and to interpret software characteristic information. Then the modified K-means algorithm was used to classify the meteorological data processing software. Finally, it combined with the results of principal component analysis to explain the significance of various types of integrated software operating characteristics. And it is used as the basis for optimizing the allocation of software hardware resources and improving the efficiency of software operation. 展开更多
关键词 Principal COMPONENT ANALYSIS improved K-mean ALGORITHM METEOROLOGICAL Data Processing FEATURE ANALYSIS SIMILARITY ALGORITHM
下载PDF
应用Mean Shift和分块的抗遮挡跟踪 被引量:28
11
作者 颜佳 吴敏渊 +1 位作者 陈淑珍 张青林 《光学精密工程》 EI CAS CSCD 北大核心 2010年第6期1413-1419,共7页
针对传统Mean Shift跟踪算法在目标发生遮挡时容易跟偏甚至跟丢的缺陷,提出了一种新的抗遮挡跟踪算法。首先,对跟踪窗口内的目标进行分块;然后,对外围子块分别实施Mean Shift跟踪算法并检测遮挡的发生,当遮挡发生后即对所有子块实施Mean... 针对传统Mean Shift跟踪算法在目标发生遮挡时容易跟偏甚至跟丢的缺陷,提出了一种新的抗遮挡跟踪算法。首先,对跟踪窗口内的目标进行分块;然后,对外围子块分别实施Mean Shift跟踪算法并检测遮挡的发生,当遮挡发生后即对所有子块实施Mean Shift跟踪算法;最后,引入一种子块置信度机制并仅用置信度最高的子块来确定目标的最终位置,从而在目标发生遮挡时能有效剔除被遮挡子块对目标定位的影响。对不同的视频序列测试的结果显示,本算法能对发生遮挡的目标进行准确跟踪。当遮挡目标尺寸为70pixel×100pixel时,平均处理时间为38.6ms/frame。结果表明,改进算法能够满足目标跟踪系统稳定性和实时性的要求。 展开更多
关键词 mean shift 目标跟踪 分块 抗遮挡
下载PDF
Mean shift在目标跟踪中的应用 被引量:30
12
作者 宋新 沈振康 +1 位作者 王平 王鲁平 《系统工程与电子技术》 EI CSCD 北大核心 2007年第9期1405-1409,共5页
首先总结了Mean shift的发展过程,并且分析了Mean shift算法的参数少,鲁棒性强,快速实现模式计算的特点,然后根据它在目标跟踪中的应用,总结了该算法核函数直方图对目标的特征描述比较弱,容易陷入局部最大值,不能适应目标多自由度变化... 首先总结了Mean shift的发展过程,并且分析了Mean shift算法的参数少,鲁棒性强,快速实现模式计算的特点,然后根据它在目标跟踪中的应用,总结了该算法核函数直方图对目标的特征描述比较弱,容易陷入局部最大值,不能适应目标多自由度变化的缺点,针对缺点提出的不同的改进方法进行了归纳,最后对未来的发展进行了预测。 展开更多
关键词 目标跟踪 mean shift综述 核函数 KALMAN滤波
下载PDF
基于分级mean shift的图像分割算法 被引量:12
13
作者 汤杨 潘志庚 +2 位作者 汤敏 王平安 夏德深 《计算机研究与发展》 EI CSCD 北大核心 2009年第9期1424-1431,共8页
实验发现传统mean shift算法进行分割时常会产生连接通道问题,使得几个分类簇之间无法完全分开.针对该问题,提出一种改进的分级mean shift图像分割算法,在初次迭代获得的聚类中心基础上采用不同的带宽矩阵进行多次聚类,从而获得不同级... 实验发现传统mean shift算法进行分割时常会产生连接通道问题,使得几个分类簇之间无法完全分开.针对该问题,提出一种改进的分级mean shift图像分割算法,在初次迭代获得的聚类中心基础上采用不同的带宽矩阵进行多次聚类,从而获得不同级的聚类中心集合,并建立一个归属树结构,最终通过叶节点与根节点的归属关系进行归类从而完成图像分割.实验证明改进算法可以更好地保留图像的局部信息,同时具有较好的适用性. 展开更多
关键词 mean shift 分级 图像分割 连接通道
下载PDF
快速运动目标的Mean shift跟踪算法 被引量:50
14
作者 朱胜利 朱善安 李旭超 《光电工程》 EI CAS CSCD 北大核心 2006年第5期66-70,共5页
针对Meanshift本身的理论缺陷,提出Meanshift和卡尔曼滤波器相结合的快速目标跟踪算法。利用卡尔曼滤波器来获得每帧Meanshift算法的起始位置,然后再利用Meanshift算法得到跟踪位置。在目标出现大比例阻挡情况时,利用卡尔曼残差的计算... 针对Meanshift本身的理论缺陷,提出Meanshift和卡尔曼滤波器相结合的快速目标跟踪算法。利用卡尔曼滤波器来获得每帧Meanshift算法的起始位置,然后再利用Meanshift算法得到跟踪位置。在目标出现大比例阻挡情况时,利用卡尔曼残差的计算来关闭和打开卡尔曼滤波器,此时,目标位置的线性预测替代了卡尔曼的作用。试验证明,本算法可以实现对快速运动目标的跟踪,对阻挡也有很好的鲁棒性。 展开更多
关键词 mean shift 核函数 卡尔曼滤波器 目标跟踪
下载PDF
基于Mean shift的筛面物料颗粒目标运动轨迹跟踪 被引量:16
15
作者 李耀明 赵湛 +1 位作者 张文斌 李洪昌 《农业工程学报》 EI CAS CSCD 北大核心 2009年第5期119-122,共4页
为了获取农业物料在风筛式清选筛面的实际运动规律,通过对多颗粒散体中的目标颗粒进行着色处理,提出采用基于颜色特征向量的Meanshift算法,实现对目标运动轨迹的跟踪。算法根据Bhattacharyya系数的大小判定跟踪目标是否被遮挡,并引入了K... 为了获取农业物料在风筛式清选筛面的实际运动规律,通过对多颗粒散体中的目标颗粒进行着色处理,提出采用基于颜色特征向量的Meanshift算法,实现对目标运动轨迹的跟踪。算法根据Bhattacharyya系数的大小判定跟踪目标是否被遮挡,并引入了Kalman滤波器设计。在正常跟踪过程中,利用Kalman滤波器预测每帧Mean shift算法的起始位置,然后利用Mean shift算法对目标进行精确定位,当目标被遮挡时,将其运动视为时不变系统,并通过Kalman滤波器估算目标近似位置。试验结果表明,该方法在复杂背景和光照变化条件下,实现了对快速运动目标的稳定持续跟踪,具有很好的鲁棒性,为散体颗粒运动规律的研究提供了一种图像检测方法。 展开更多
关键词 轨迹跟踪 KALMAN滤波器 图像处理 核函数 mean shift BHATTACHARYYA系数
下载PDF
基于空间边缘方向直方图的Mean Shift跟踪算法 被引量:18
16
作者 王新红 王晶 +2 位作者 田敏 杨煜 李志鹏 《中国图象图形学报》 CSCD 北大核心 2008年第3期586-592,共7页
传统的基于色彩直方图或空间色彩直方图的Mean Shift跟踪算法,在诸如跟踪目标出现尺度变化的复杂条件下,无法得到准确的跟踪结果。这是因为色彩直方图或空间色彩直方图无法显著区分颜色相近的目标和背景。鉴于此,提出了一种基于空间边... 传统的基于色彩直方图或空间色彩直方图的Mean Shift跟踪算法,在诸如跟踪目标出现尺度变化的复杂条件下,无法得到准确的跟踪结果。这是因为色彩直方图或空间色彩直方图无法显著区分颜色相近的目标和背景。鉴于此,提出了一种基于空间边缘方向直方图的Mean Shift跟踪算法,使用空间分布和纹理信息作为匹配信息。实验结果表明,该算法能够有效的处理遮挡、光照变化和尺度缩放等复杂情况,对目标进行准确有效的跟踪,改善了传统方法在尺度缩放等方面的局限性。 展开更多
关键词 空间边缘方向直方图 mean shift 目标跟踪
下载PDF
Mean-Shift跟踪算法中目标模型的自适应更新 被引量:23
17
作者 彭宁嵩 杨杰 +1 位作者 周大可 刘志 《数据采集与处理》 CSCD 北大核心 2005年第2期125-129,共5页
针对Mean-shift跟踪算法中的模型更新问题,提出利用目标历史模型和当前匹配位置处得到的观测模型,对目标核函数直方图进行Kalman滤波,从而对目标模型进行及时更新。在滤波过程中,通过分析滤波残差动态,调整滤波方程中的各种参数。Bhatta... 针对Mean-shift跟踪算法中的模型更新问题,提出利用目标历史模型和当前匹配位置处得到的观测模型,对目标核函数直方图进行Kalman滤波,从而对目标模型进行及时更新。在滤波过程中,通过分析滤波残差动态,调整滤波方程中的各种参数。Bhattacharyya系数被用作模型更新的准则。该系统能够有效地处理遮挡、光照变化等干扰,避免了模型的过更新。大量视频序列测试的结果表明,在场景遮挡、光照变化等因素的影响下,算法能够对目标外观以及尺度的变化进行稳健、实时和有效的跟踪。 展开更多
关键词 目标跟踪 meanshift 自适应Kalman滤波 模型更新 BHATTACHARYYA系数
下载PDF
一种分层Mean Shift目标跟踪算法 被引量:11
18
作者 许海霞 王耀南 +2 位作者 袁小芳 周维 朱江 《自动化学报》 EI CSCD 北大核心 2009年第4期401-409,共9页
针对经典Mean shift(MS)目标跟踪算法的颜色特征鲁棒差、匹配迭代复杂的缺点,提出一种分层Mean shift (Hierarchical mean shift,HMS)目标跟踪算法.首先通过MS迭代将目标区域特征空间的数据点聚类于模式点,使得以简洁的方式描述前景跟... 针对经典Mean shift(MS)目标跟踪算法的颜色特征鲁棒差、匹配迭代复杂的缺点,提出一种分层Mean shift (Hierarchical mean shift,HMS)目标跟踪算法.首先通过MS迭代将目标区域特征空间的数据点聚类于模式点,使得以简洁的方式描述前景跟踪目标,建立目标模型与目标候选模型的聚类模式点描述,进行聚类块匹配.然后,导出聚类块模式点匹配下的相似度量函数,进行像素点匹配,结合邻域一致性,计算像素平移量,分层估计序列帧中跟踪目标质心模式点的位置,并给出HMS匹配迭代跟踪算法.实验结果表明,与其他两种MS跟踪算法相比,HMS既能提高序列帧跟踪目标表达与匹配的鲁棒性,又无需匹配所有数据点,算法简洁且有效可行. 展开更多
关键词 目标跟踪 分层mean shift 聚类模式点 匹配
下载PDF
基于改进的Mean Shift算法虚拟人脑图像分割 被引量:10
19
作者 陈允杰 张建伟 +2 位作者 王利 王平安 夏德深 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2008年第1期55-60,共6页
为了克服Mean Shift算法各向同性的缺点,使用结构信息构造各向异性高斯核,使其具有各向异性,从而克服细长目标的影响;将颜色空间投影到新的坐标系下,使得相近颜色可以有较大的距离,以增大虚拟人脑图像中灰质与下层数据之间的区别.虚拟... 为了克服Mean Shift算法各向同性的缺点,使用结构信息构造各向异性高斯核,使其具有各向异性,从而克服细长目标的影响;将颜色空间投影到新的坐标系下,使得相近颜色可以有较大的距离,以增大虚拟人脑图像中灰质与下层数据之间的区别.虚拟人脑图像分割结果说明,该算法可以得到较好的分割结果. 展开更多
关键词 虚拟人 mean shift算法 各向异性 主成分分析
下载PDF
基于改进Mean-Shift算法的红外小目标跟踪 被引量:12
20
作者 杨一帆 田雁 +1 位作者 杨帆 黄彪 《红外与激光工程》 EI CSCD 北大核心 2014年第7期2164-2169,共6页
复杂背景下的红外小目标跟踪在目标跟踪领域一直是重要的研究方向。由于小目标体量小、机动性大,而红外图像大多受到严重的背景噪声和热噪声影响,使得针对红外小目标的跟踪大多出错率高,鲁棒性不强。针对红外小目标的跟踪,提出了一种改... 复杂背景下的红外小目标跟踪在目标跟踪领域一直是重要的研究方向。由于小目标体量小、机动性大,而红外图像大多受到严重的背景噪声和热噪声影响,使得针对红外小目标的跟踪大多出错率高,鲁棒性不强。针对红外小目标的跟踪,提出了一种改进的Mean-Shift算法。结合图像的统计特性,提出了一种自适应非线性算法对图像进行处理;同时融合了图像的梯度直方图对目标进行描述。实验通过对高强度噪声和高遮挡环境下视频目标进行跟踪,比较了传统Mean-Shift算法和改进后算法的跟踪效果,结果显示文中提出的改进算法不但可以有效地跟踪目标,而且大幅降低了跟踪窗口与目标之间的相对抖动,增强了跟踪算法的鲁棒性。 展开更多
关键词 meanshift 红外小目标 自适应 非线性 融合
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部