Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnet...For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.展开更多
A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of op...A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.展开更多
Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources secur...Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency.展开更多
The threats and challenges of unmanned aerial vehicle(UAV) invasion defense due to rapid UAV development have attracted increased attention recently. One of the important UAV invasion defense methods is radar network ...The threats and challenges of unmanned aerial vehicle(UAV) invasion defense due to rapid UAV development have attracted increased attention recently. One of the important UAV invasion defense methods is radar network detection. To form a tight and reliable radar surveillance network with limited resources, it is essential to investigate optimized radar network deployment. This optimization problem is difficult to solve due to its nonlinear features and strong coupling of multiple constraints. To address these issues, we propose an improved firefly algorithm that employs a neighborhood learning strategy with a feedback mechanism and chaotic local search by elite fireflies to obtain a trade-off between exploration and exploitation abilities. Moreover, a chaotic sequence is used to generate initial firefly positions to improve population diversity. Experiments have been conducted on 12 famous benchmark functions and in a classical radar deployment scenario. Results indicate that our approach achieves much better performance than the classical firefly algorithm(FA) and four recently proposed FA variants.展开更多
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
基金This work was supported in part by the National Natural Science Foundation of China under Grant51507016。
文摘For an optimal design of a surface-mounted permanent magnet synchronous motor(SPMSM),many objective functions should be considered.The classical optimization methods,which have been habitually designed based on magnetic circuit law or finite element analysis(FEA),have inaccuracy or calculation time problems when solving the multi-objective problems.To address these problems,the multi-independent-population genetic algorithm(MGA)combined with subdomain(SD)model are proposed to improve the performance of SPMSM such as magnetic field distribution,cost and efficiency.In order to analyze the flux density harmonics accurately,the accurate SD model is first established.Then,the MGA with time-saving SD model are employed to search for solutions which belong to the Pareto optimal set.Finally,for the purpose of validation,the electromagnetic performance of the new design motor are investigated by FEA,comparing with the initial design and conventional GA optimal design to demonstrate the advantage of MGA optimization method.
基金This work was supported by the Youth Backbone Teachers Training Program of Henan Colleges and Universities under Grant No.2016ggjs-287the Project of Science and Technology of Henan Province under Grant Nos.172102210124 and 202102210269.
文摘A multi-objective improved genetic algorithm is constructed to solve the train operation simulation model of urban rail train and find the optimal operation curve.In the train control system,the conversion point of operating mode is the basic of gene encoding and the chromosome composed of multiple genes represents a control scheme,and the initial population can be formed by the way.The fitness function can be designed by the design requirements of the train control stop error,time error and energy consumption.the effectiveness of new individual can be ensured by checking the validity of the original individual when its in the process of selection,crossover and mutation,and the optimal algorithm will be joined all the operators to make the new group not eliminate on the best individual of the last generation.The simulation result shows that the proposed genetic algorithm comparing with the optimized multi-particle simulation model can reduce more than 10%energy consumption,it can provide a large amount of sub-optimal solution and has obvious optimization effect.
文摘Based on the current cloud computing resources security distribution model’s problem that the optimization effect is not high and the convergence is not good, this paper puts forward a cloud computing resources security distribution model based on improved artificial firefly algorithm. First of all, according to characteristics of the artificial fireflies swarm algorithm and the complex method, it incorporates the ideas of complex method into the artificial firefly algorithm, uses the complex method to guide the search of artificial fireflies in population, and then introduces local search operator in the firefly mobile mechanism, in order to improve the searching efficiency and convergence precision of algorithm. Simulation results show that, the cloud computing resources security distribution model based on improved artificial firefly algorithm proposed in this paper has good convergence effect and optimum efficiency.
基金Project supported by the National Key Laboratory of CNS/ATMBeijing Key Laboratory for Network-Based Cooperative Air Traffic Managementthe National Natural Science Foundation of China(No.71731001)
文摘The threats and challenges of unmanned aerial vehicle(UAV) invasion defense due to rapid UAV development have attracted increased attention recently. One of the important UAV invasion defense methods is radar network detection. To form a tight and reliable radar surveillance network with limited resources, it is essential to investigate optimized radar network deployment. This optimization problem is difficult to solve due to its nonlinear features and strong coupling of multiple constraints. To address these issues, we propose an improved firefly algorithm that employs a neighborhood learning strategy with a feedback mechanism and chaotic local search by elite fireflies to obtain a trade-off between exploration and exploitation abilities. Moreover, a chaotic sequence is used to generate initial firefly positions to improve population diversity. Experiments have been conducted on 12 famous benchmark functions and in a classical radar deployment scenario. Results indicate that our approach achieves much better performance than the classical firefly algorithm(FA) and four recently proposed FA variants.
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.