In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means t...In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.展开更多
Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.Howeve...Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).展开更多
The chirplet transform is the generalization form of fast Fourier transform , short-time Fourier transform, and wavelet transform. It has the most flexible time frequency window and successfully used in practices. How...The chirplet transform is the generalization form of fast Fourier transform , short-time Fourier transform, and wavelet transform. It has the most flexible time frequency window and successfully used in practices. However, the chirplet transform has not inherent inverse transform, and can not overcome the signal reconstructing problem. In this paper, we proposed the improved chirplet transform (ICT) and constructed the inverse ICT. Finally, by simulating the harmonic voltages, The power of the improved chirplet transform are illustrated for harmonic detection. The contours clearly showed the harmonic occurrence time and harmonic duration.展开更多
The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by consideri...The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.展开更多
The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals...The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method.展开更多
Considering the problem of traditional cervical cancer detection method that brings high false negative rate (FNR) and high false positive rate (FPR), a new abnormal cervical cells detection method of multi-spectr...Considering the problem of traditional cervical cancer detection method that brings high false negative rate (FNR) and high false positive rate (FPR), a new abnormal cervical cells detection method of multi-spectral Pap smear is proposed in this thesis, on the basis of multi-spectral microscopic imaging technology and computer automotive recognition technology. At first, image in a specific wave band is segmented according to the relationship between intensity and spectrum of each pixel. Then, multi-spectral features of each pixel are extracted making use of improved cosine correlation analysis (CCA) algorithm. Combined with the characteristic of each cell's area, final definition is made. Experiments have proved the new approach could identify abnormal cells efficiently as well as lower FNR and FPR.展开更多
To seek high signal-to-noise ratio(SNR) is critical but challenging for single-shot intense terahertz(THz)coherent detection. This paper presents an improved common-path spectral interferometer for single-shot THz det...To seek high signal-to-noise ratio(SNR) is critical but challenging for single-shot intense terahertz(THz)coherent detection. This paper presents an improved common-path spectral interferometer for single-shot THz detection with a single chirped pulse as the probe for THz electro-optic(EO) sampling. Here, the spectral interference occurs between the two orthogonal polarization components with a required relative time delay generated with only a birefringent plate after the EO sensor. Our experiments show that this interferometer can effectively suppress the noise usually suffered in a non-common-path interferometer. The measured single-shot SNR is up to 88.85, and the measured THz waveforms are independent of the orientation of the used Zn Te EO sensor, so it is easy to operate and the results are more reliable. These features mean that the interferometer is quite qualified for applications where strong THz pulses, usually with single-shot or low repetition rate, are indispensable.展开更多
According to the decline of recognition rate of speech recognition system in the noise environments, an improved perceptually non-uniform spectral compression feature extraction algorithm is put forward in this paper....According to the decline of recognition rate of speech recognition system in the noise environments, an improved perceptually non-uniform spectral compression feature extraction algorithm is put forward in this paper. This method can realize an effective compression of the speech signals and make the training and recognition environments more matching, so the recognition rate can be improved in the noise environments. By experimenting on the intelligent wheelchair platform, the result shows that the algorithm can effectively enhance the robustness of speech recognition, and ensure the recognition rate in the noise environments.展开更多
基金supported by the National Key Technology R&D Program (Grant 2011BAJ02B01-02)the National Natural Science Foundation of China (Grant 11602065)
文摘In this paper, the spectral element method(SEM)is improved to solve the moving load problem. In this method, a structure with uniform geometry and material properties is considered as a spectral element, which means that the element number and the degree of freedom can be reduced significantly. Based on the variational method and the Laplace transform theory, the spectral stiffness matrix and the equivalent nodal force of the beam-column element are established. The static Green function is employed to deduce the improved function. The proposed method is applied to two typical engineering practices—the one-span bridge and the horizontal jib of the tower crane. The results have revealed the following. First, the new method can yield extremely high-precision results of the dynamic deflection, the bending moment and the shear force in the moving load problem.In most cases, the relative errors are smaller than 1%. Second, by comparing with the finite element method, one can obtain the highly accurate results using the improved SEM with smaller element numbers. Moreover, the method can be widely used for statically determinate as well as statically indeterminate structures. Third, the dynamic deflection of the twin-lift jib decreases with the increase in the moving load speed, whereas the curvature of the deflection increases.Finally, the dynamic deflection, the bending moment and the shear force of the jib will all increase as the magnitude of the moving load increases.
基金National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).
文摘The chirplet transform is the generalization form of fast Fourier transform , short-time Fourier transform, and wavelet transform. It has the most flexible time frequency window and successfully used in practices. However, the chirplet transform has not inherent inverse transform, and can not overcome the signal reconstructing problem. In this paper, we proposed the improved chirplet transform (ICT) and constructed the inverse ICT. Finally, by simulating the harmonic voltages, The power of the improved chirplet transform are illustrated for harmonic detection. The contours clearly showed the harmonic occurrence time and harmonic duration.
基金This work was supported by the National Natural Science Foundation of China(61903086,61903366,62001115)the Natural Science Foundation of Hunan Province(2019JJ50745,2020JJ4280,2021JJ40133)the Fundamentals and Basic of Applications Research Foundation of Guangdong Province(2019A1515110136).
文摘The observation error model of the underwater acous-tic positioning system is an important factor to influence the positioning accuracy of the underwater target.For the position inconsistency error caused by considering the underwater tar-get as a mass point,as well as the observation system error,the traditional error model best estimation trajectory(EMBET)with little observed data and too many parameters can lead to the ill-condition of the parameter model.In this paper,a multi-station fusion system error model based on the optimal polynomial con-straint is constructed,and the corresponding observation sys-tem error identification based on improved spectral clustering is designed.Firstly,the reduced parameter unified modeling for the underwater target position parameters and the system error is achieved through the polynomial optimization.Then a multi-sta-tion non-oriented graph network is established,which can address the problem of the inaccurate identification for the sys-tem errors.Moreover,the similarity matrix of the spectral cluster-ing is improved,and the iterative identification for the system errors based on the improved spectral clustering is proposed.Finally,the comprehensive measured data of long baseline lake test and sea test show that the proposed method can accu-rately identify the system errors,and moreover can improve the positioning accuracy for the underwater target positioning.
基金supported by the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology(No.PLC201402)National Nature Science Foundation of China(No.U1562111)
文摘The fractional S-transform (FRST) has good time-frequency focusing ability. The FRST can identify geological features by rotating the fractional Fourier transform frequency (FRFTfr) axis. Different seismic signals have different optimal fractional parameters which is not conducive to multichannel seismic data processing. Thus, we first decompose the common-frequency sections by the FRST and then we analyze the low-frequency shadow. Second, the combination of the FRST and blind-source separation is used to obtain the independent spectra of the various geological features. The seismic data interpretation improves without requiring to estimating the optimal fractional parameters. The top and bottom of a limestone reservoir can be clearly recognized on the common-frequency section, thus enhancing the vertical resolution of the analysis of the low-frequency shadows compared with traditional ST. Simulations suggest that the proposed method separates the independent frequency information in the time-fractional-frequency domain. We used field seismic and well data to verify the proposed method.
基金Supported by Key Project of the Tenth Five-Year Plan of the Ministry of Science and Technology of China (2001BA210A02)
文摘Considering the problem of traditional cervical cancer detection method that brings high false negative rate (FNR) and high false positive rate (FPR), a new abnormal cervical cells detection method of multi-spectral Pap smear is proposed in this thesis, on the basis of multi-spectral microscopic imaging technology and computer automotive recognition technology. At first, image in a specific wave band is segmented according to the relationship between intensity and spectrum of each pixel. Then, multi-spectral features of each pixel are extracted making use of improved cosine correlation analysis (CCA) algorithm. Combined with the characteristic of each cell's area, final definition is made. Experiments have proved the new approach could identify abnormal cells efficiently as well as lower FNR and FPR.
基金National Natural Science Foundation of China(NSFC)(61490710,61775142,61705132)Science and Technology Planning Project of Guangdong Province(2016B050501005)Specialized Research Fund for the Shenzhen Strategic Emerging Industries Development(JCYJ20150324141711651,JCYJ20150525092941064,JCYJ20170412105812811)
文摘To seek high signal-to-noise ratio(SNR) is critical but challenging for single-shot intense terahertz(THz)coherent detection. This paper presents an improved common-path spectral interferometer for single-shot THz detection with a single chirped pulse as the probe for THz electro-optic(EO) sampling. Here, the spectral interference occurs between the two orthogonal polarization components with a required relative time delay generated with only a birefringent plate after the EO sensor. Our experiments show that this interferometer can effectively suppress the noise usually suffered in a non-common-path interferometer. The measured single-shot SNR is up to 88.85, and the measured THz waveforms are independent of the orientation of the used Zn Te EO sensor, so it is easy to operate and the results are more reliable. These features mean that the interferometer is quite qualified for applications where strong THz pulses, usually with single-shot or low repetition rate, are indispensable.
基金supported by the International Science and Technology Cooperation Program of China (2010DFA12160)the National Natural Science Foundation of China (51075420),the National Natural Science Foundation of China (60905066)the Science & Technology Research Project of Chongqing CSTC(2010AA2055)
文摘According to the decline of recognition rate of speech recognition system in the noise environments, an improved perceptually non-uniform spectral compression feature extraction algorithm is put forward in this paper. This method can realize an effective compression of the speech signals and make the training and recognition environments more matching, so the recognition rate can be improved in the noise environments. By experimenting on the intelligent wheelchair platform, the result shows that the algorithm can effectively enhance the robustness of speech recognition, and ensure the recognition rate in the noise environments.