For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence a...For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.展开更多
In the cloud era, the control objects are becoming larger and the information processing is more complex, and it is difficult for traditional control systems to process massive data in a timely manner. In view of the ...In the cloud era, the control objects are becoming larger and the information processing is more complex, and it is difficult for traditional control systems to process massive data in a timely manner. In view of the difficulty of data processing in the cloud era, it is extremely important to perform massive data operations through cloud servers. Unmanned aeriel vehicle(UAV) control is the representative of the intelligent field. Based on the ant colony algorithm and incorporating the potential field method, an improved potential field ant colony algorithm is designed. To deal with the path planning problem of UAVs, the potential field ant colony algorithm shortens the optimal path distance by 6.7%, increases the algorithm running time by39.3%, and increases the maximum distance by 24.1% compared with the previous improvement. The cloud server is used to process the path problem of the UAV and feedback the calculation results in real time. Simulation experiments verify the effectiveness of the new algorithm in the cloud environment.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
基金National Natural Science Foundation of China(No.61373110)the Science-Technology Project of Wuhan,China(No.2014010101010005)
文摘For the mobile robot path planning under the complex environment,ant colony optimization with artificial potential field based on grid map is proposed to avoid traditional ant colony algorithm's poor convergence and local optimum.Firstly,the pheromone updating mechanism of ant colony is designed by a hybrid strategy of global map updating and local grids updating.Then,some angles between the vectors of artificial potential field and the orientations of current grid are introduced to calculate the visibility of eight-neighbor cells of cellular automata,which are adopted as ant colony's inspiring factor to calculate the transition probability based on the pseudo-random transition rule cellular automata.Finally,mobile robot dynamic path planning and the simulation experiments are completed by this algorithm,and the experimental results show that the method is feasible and effective.
基金supported by the Natural Science Foundation of Heilongjiang Province (LH2021E045)。
文摘In the cloud era, the control objects are becoming larger and the information processing is more complex, and it is difficult for traditional control systems to process massive data in a timely manner. In view of the difficulty of data processing in the cloud era, it is extremely important to perform massive data operations through cloud servers. Unmanned aeriel vehicle(UAV) control is the representative of the intelligent field. Based on the ant colony algorithm and incorporating the potential field method, an improved potential field ant colony algorithm is designed. To deal with the path planning problem of UAVs, the potential field ant colony algorithm shortens the optimal path distance by 6.7%, increases the algorithm running time by39.3%, and increases the maximum distance by 24.1% compared with the previous improvement. The cloud server is used to process the path problem of the UAV and feedback the calculation results in real time. Simulation experiments verify the effectiveness of the new algorithm in the cloud environment.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.