期刊文献+
共找到982篇文章
< 1 2 50 >
每页显示 20 50 100
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
1
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
下载PDF
Development of an Artificial Fish Swarm Algorithm Based on aWireless Sensor Networks in a Hydrodynamic Background
2
作者 Sheng Bai Feng Bao +1 位作者 Fengzhi Zhao Miaomiao Liu 《Fluid Dynamics & Materials Processing》 EI 2020年第5期935-946,共12页
The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor net... The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments.An artificial fish swarm algorithm is developed which relies on a wireless sensor network(WSN)in a hydrodynamic background.The nodes of this algorithm are viscous fluids and artificial fish,while related‘events’are directly connected to the food available in the related virtual environment.The results show that the total processing time of the data by the source node is 6.661 ms,of which the processing time of crosstalk data is 3.789 ms,accounting for 56.89%.The total processing time of the data by the relay node is 15.492 ms,of which the system scheduling and the Carrier Sense Multiple Access(CSMA)rollback time of the forwarding is 8.922 ms,accounting for 57.59%.The total time for the data processing of the receiving node is 11.835 ms,of which the processing time of crosstalk data is 3.791 ms,accounting for 32.02%;the serial data processing time is 4.542 ms,accounting for 38.36%.Crosstalk packets occupy a certain amount of system overhead in the internal communication of nodes,which is one of the causes of node-level congestion.We show that optimizing the crosstalk phenomenon can alleviate the internal congestion of nodes to some extent. 展开更多
关键词 artificial fish swarm algorithm wireless sensor network network measurement HYDRODYNAMICS
下载PDF
Artificial Fish Swarm Optimization with Deep Learning Enabled Opinion Mining Approach 被引量:1
3
作者 Saud S.Alotaibi Eatedal Alabdulkreem +5 位作者 Sami Althahabi Manar Ahmed Hamza Mohammed Rizwanullah Abu Sarwar Zamani Abdelwahed Motwakel Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期737-751,共15页
Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the patte... Sentiment analysis or opinion mining(OM)concepts become familiar due to advances in networking technologies and social media.Recently,massive amount of text has been generated over Internet daily which makes the pattern recognition and decision making process difficult.Since OM find useful in business sectors to improve the quality of the product as well as services,machine learning(ML)and deep learning(DL)models can be considered into account.Besides,the hyperparameters involved in the DL models necessitate proper adjustment process to boost the classification process.Therefore,in this paper,a new Artificial Fish Swarm Optimization with Bidirectional Long Short Term Memory(AFSO-BLSTM)model has been developed for OM process.The major intention of the AFSO-BLSTM model is to effectively mine the opinions present in the textual data.In addition,the AFSO-BLSTM model undergoes pre-processing and TF-IFD based feature extraction process.Besides,BLSTM model is employed for the effectual detection and classification of opinions.Finally,the AFSO algorithm is utilized for effective hyperparameter adjustment process of the BLSTM model,shows the novelty of the work.A complete simulation study of the AFSO-BLSTM model is validated using benchmark dataset and the obtained experimental values revealed the high potential of the AFSO-BLSTM model on mining opinions. 展开更多
关键词 Sentiment analysis opinion mining natural language processing artificial fish swarm algorithm deep learning
下载PDF
Study of Direction Probability and Algorithm of Improved Marriage in Honey Bees Optimization for Weapon Network System 被引量:2
4
作者 杨晨光 涂序彦 陈杰 《Defence Technology(防务技术)》 SCIE EI CAS 2009年第2期152-157,共6页
To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damagin... To solve the weapon network system optimization problem against small raid objects with low attitude,the concept of direction probability and a new evaluation index system are proposed.By calculating the whole damaging probability that changes with the defending angle,the efficiency of the whole weapon network system can be subtly described.With such method,we can avoid the inconformity of the description obtained from the traditional index systems.Three new indexes are also proposed,i.e.join index,overlap index and cover index,which help manage the relationship among several sub-weapon-networks.By normalizing the computation results with the Sigmoid function,the matching problem between the optimization algorithm and indexes is well settled.Also,the algorithm of improved marriage in honey bees optimization that proposed in our previous work is applied to optimize the embattlement problem.Simulation is carried out to show the efficiency of the proposed indexes and the optimization algorithm. 展开更多
关键词 网络系统 优化问题 破坏概率 算法改进 核武器 蜜蜂 婚姻 SIGMOID函数
下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
5
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(iafsa-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
下载PDF
Intelligent approach of score-based artificial fish swarm algorithm(SAFSA)for Parkinson’s disease diagnosis 被引量:1
6
作者 Syed Haroon Abdul Gafoor Padma Theagarajan 《International Journal of Intelligent Computing and Cybernetics》 EI 2022年第4期540-561,共22页
Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resu... Purpose-Conventional diagnostic techniques,on the other hand,may be prone to subjectivity since they depend on assessment of motions that are often subtle to individual eyes and hence hard to classify,potentially resulting in misdiagnosis.Meanwhile,early nonmotor signs of Parkinson’s disease(PD)can be mild and may be due to variety of other conditions.As a result,these signs are usually ignored,making early PD diagnosis difficult.Machine learning approaches for PD classification and healthy controls or individuals with similar medical symptoms have been introduced to solve these problems and to enhance the diagnostic and assessment processes of PD(like,movement disorders or other Parkinsonian syndromes).Design/methodology/approach-Medical observations and evaluation of medical symptoms,including characterization of a wide range of motor indications,are commonly used to diagnose PD.The quantity of the data being processed has grown in the last five years;feature selection has become a prerequisite before any classification.This study introduces a feature selection method based on the score-based artificial fish swarm algorithm(SAFSA)to overcome this issue.Findings-This study adds to the accuracy of PD identification by reducing the amount of chosen vocal features while to use the most recent and largest publicly accessible database.Feature subset selection in PD detection techniques starts by eliminating features that are not relevant or redundant.According to a few objective functions,features subset chosen should provide the best performance.Research limitations/implications-In many situations,this is an Nondeterministic Polynomial Time(NPHard)issue.This method enhances the PD detection rate by selecting the most essential features from the database.To begin,the data set’s dimensionality is reduced using Singular Value Decomposition dimensionality technique.Next,Biogeography-Based Optimization(BBO)for feature selection;the weight value is a vital parameter for finding the best features in PD classification.Originality/value-PD classification is done by using ensemble learning classification approaches such as hybrid classifier of fuzzy K-nearest neighbor,kernel support vector machines,fuzzy convolutional neural network and random forest.The suggested classifiers are trained using data from UCIMLrepository,and their results are verified using leave-one-person-out cross validation.The measures employed to assess the classifier efficiency include accuracy,F-measure,Matthews correlation coefficient. 展开更多
关键词 Parkinson disease dysphonia features Feature subset selection Score-based artificial fish swarm algorithm(SAFSA) Singular value decomposition(SVD) Classification
原文传递
IAFSA-RBF神经网络在短期负荷预测中的应用 被引量:7
7
作者 李如琦 褚金胜 +1 位作者 谢林峰 王宗耀 《电力系统及其自动化学报》 CSCD 北大核心 2011年第2期142-146,共5页
为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并... 为了提高人工鱼群算法AFSA(artificial fish swarm algorithm)的全局搜索能力及加快其收敛速度,提出一种将其与免疫算法IA(immune algorithm)进行结合的新方法,形成了免疫人工鱼群算法IAFSA(immuneartificial fish swarm algorithm),并且利用该算法自动选取径向基函数RBF(radial basis function)神经网络中的输入变量,以及对网络中隐含层到输出层之间的权值进行训练,从而减少了RBF神经网络的工作量,提高了训练速度。用优化后的RBF神经网络进行短期负荷预测,结果表明,该方法具有较高的预测精度。 展开更多
关键词 负荷预测 神经网络 人工鱼群算法 免疫算法 输入变量选择 径向基函数
下载PDF
基于IAFSA-SVM的岸电箱断路器故障诊断 被引量:2
8
作者 杨奕飞 焦文文 +2 位作者 何祖军 张发平 郭江 《电工电气》 2019年第8期57-61,共5页
断路器的故障诊断对岸电系统的稳定运行有重要意义。针对人工鱼群算法和其他智能算法在优化支持向量机参数时,存在易陷入局部最优、泛化能力差等问题,通过自适应调整步长和引入全局随机行为,提出基于改进人工鱼群算法优化支持向量机参... 断路器的故障诊断对岸电系统的稳定运行有重要意义。针对人工鱼群算法和其他智能算法在优化支持向量机参数时,存在易陷入局部最优、泛化能力差等问题,通过自适应调整步长和引入全局随机行为,提出基于改进人工鱼群算法优化支持向量机参数的故障诊断模型。将断路器合闸线圈电流信号中的时间和电流信号作为特征量,采用改进人工鱼群算法对支持向量机的参数寻优,以提升支持向量机的故障分类性能。仿真结果显示,该算法在样本数量小的情况下仍具有良好的分类性能,能够准确对断路器进行故障分类。 展开更多
关键词 支持向量机 改进人工鱼群算法 岸电箱 断路器故障诊断
下载PDF
基于IAFSA优化权值的医学图像检索
9
作者 石晓艳 刘淮霞 于水娟 《计算机工程与设计》 CSCD 北大核心 2014年第11期3961-3966,共6页
为提高医学图像的检索结果,提出一种基于改进人工鱼群算法的医学图像相关反馈检索方法 (ISAFA)。提取医学图像的颜色、纹理、形状特征,采用相似度量模型得到图像初步检索结果,根据用户的反馈信息,采用改进人工鱼群算法对特征权值进行调... 为提高医学图像的检索结果,提出一种基于改进人工鱼群算法的医学图像相关反馈检索方法 (ISAFA)。提取医学图像的颜色、纹理、形状特征,采用相似度量模型得到图像初步检索结果,根据用户的反馈信息,采用改进人工鱼群算法对特征权值进行调整,以获得更加理想的检索结果。检索结果表明,ISAFA提高了医学图像的检索准确率和检索效率,可以找到满足用户需要的医学图像。 展开更多
关键词 改进人工鱼群算法 医学图像 相似度度量 权值调整
下载PDF
基于IAFSA-SFLA的新能源电站公平调度方法研究
10
作者 杨海柱 康乐 +1 位作者 岳刚伟 韦延方 《软件》 2019年第4期35-42,共8页
随着我国的新能源电站的装机容量的不断增加,区域电网限电现象越来越严重。本文针对新能源电站发电受限时,如何公平的制定各电站调度计划的问题,提出了一种基于IAFSA-SFLA的新能源电站公平调度方法。本文所提方法主要包括两部分,第一部... 随着我国的新能源电站的装机容量的不断增加,区域电网限电现象越来越严重。本文针对新能源电站发电受限时,如何公平的制定各电站调度计划的问题,提出了一种基于IAFSA-SFLA的新能源电站公平调度方法。本文所提方法主要包括两部分,第一部分为新能源电站二阶段公平调度模型,第二部分为基于IAFSA-SFLA(改进人工鱼群-蛙跳算法)用来对调度模型进行求解。通过测试函数验证本文所提算法的有效性,并编写程序用来对所提公平调度模型进行求解,结果表明本文所提算法能够克服人工鱼群和蛙跳算法的缺点,进一步提高收敛速度和收敛精度,并且能够快速准确对本文所提公平调度模型进行求解,进行公平调度计划的制定。 展开更多
关键词 改进人工鱼群 蛙跳算法 新能源 公平调度
下载PDF
基于IAFSA和AGA混合算法的移动机器人路径规划 被引量:3
11
作者 刘宁宁 陈志军 闫学勤 《现代电子技术》 北大核心 2019年第3期157-162,共6页
针对人工鱼群算法在移动机器人路径规划中存在易陷入局部最优、结果精度不高以及遗传算法存在易早熟、收敛速度慢等问题,提出一种改进人工鱼群算法(IAFSA)和自适应遗传算法(AGA)相融合的移动机器人路径规划方法。首先用栅格法建立移动... 针对人工鱼群算法在移动机器人路径规划中存在易陷入局部最优、结果精度不高以及遗传算法存在易早熟、收敛速度慢等问题,提出一种改进人工鱼群算法(IAFSA)和自适应遗传算法(AGA)相融合的移动机器人路径规划方法。首先用栅格法建立移动机器人的环境模型,然后用IAFSA搜索移动机器人的初始可行路径,将搜索到的初始可行路径作为AGA的初始种群,最后采用AGA优化移动机器人的全局最优路径。仿真结果表明,混合算法在结果精度和稳定性方面优于标准人工鱼群算法,在跳出局部最优和收敛速度方面优于标准遗传算法。 展开更多
关键词 移动机器人 路径规划 改进人工鱼群算法 自适应遗传算法 标准人工鱼群算法 标准遗传算法
下载PDF
基于特征融合与IAFSA-SVM的滚动轴承故障诊断方法 被引量:7
12
作者 杨云博 宁芊 《轴承》 北大核心 2020年第8期56-62,共7页
针对滚动轴承振动信号时域特征表征故障信息不全面的问题,提出一种将云特征与时域特征相融合的方法,并对人工鱼群算法进行改进,引入了人工鱼的反向变异机制和感知行为,进行超参数寻优得到IAFSA-SVM故障诊断器。采集不同轴承故障数据集... 针对滚动轴承振动信号时域特征表征故障信息不全面的问题,提出一种将云特征与时域特征相融合的方法,并对人工鱼群算法进行改进,引入了人工鱼的反向变异机制和感知行为,进行超参数寻优得到IAFSA-SVM故障诊断器。采集不同轴承故障数据集的融合特征输入IAFSA-SVM进行试验,结果表明,融合特征能更全面的表征滚动轴承的不同状态信息,将其作为IAFSA-SVM的输入可以获得更高的分类准确率。 展开更多
关键词 滚动轴承 故障诊断 云特征 特征融合 改进人工鱼群 iafsa-SVM
下载PDF
IAFSA-GRNN在油田集输管道CO_(2)腐蚀速率预测中的应用 被引量:7
13
作者 郑度奎 程远鹏 +1 位作者 李昊燃 何天隆 《中国安全科学学报》 CAS CSCD 北大核心 2022年第1期110-117,共8页
为提高油田集输管道CO_(2)腐蚀速率预测的准确性,针对原始广义回归神经网络(GRNN)预测精度低的问题,提出改进的群智能算法优化原始GRNN的预测模型;分别使用GRNN模型、人工鱼群算法(AFSA)优化的GRNN(AFSA-GRNN)模型和自适应改进的AFSA-GR... 为提高油田集输管道CO_(2)腐蚀速率预测的准确性,针对原始广义回归神经网络(GRNN)预测精度低的问题,提出改进的群智能算法优化原始GRNN的预测模型;分别使用GRNN模型、人工鱼群算法(AFSA)优化的GRNN(AFSA-GRNN)模型和自适应改进的AFSA-GRNN(IAFSA-GRNN)模型预测X65管线钢的CO_(2)腐蚀速率。结果表明:采用AFSA和IAFSA优化光滑因子S后,能大大提高GRNN模型的预测精度,预测结果的平均相对误差由36.09%分别减小至7.20%和6.90%;与AFSA相比,IAFSA优化的GRNN不仅具有更高的预测精度,还具有更快的收敛速度。AFSA-GRNN在第164次迭代计算时收敛,而IAFSA-GRNN在第109次迭代计算时收敛,说明AFSA经自适应优化能提高优化过程的收敛速度和GRNN的预测精度。 展开更多
关键词 人工鱼群算法(AFSA) 广义回归神经网络(GRNN) 集输管道 CO_(2)腐蚀速率 预测精度 相对误差
下载PDF
SVC Video Transmission Optimization Algorithm in Software Defined Network
14
作者 Zhe Liu 《China Communications》 SCIE CSCD 2018年第10期143-149,共7页
Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Softwar... Scalable video coding(SVC) is a powerful tool to solve the network heterogeneity and terminal diversity in video applications. However, in related works about the optimization of SVC-based video streaming over Software Defined Network(SDN), most of the them are focused either on the number of transmission layers or on the optimization of transmission path for specific layer. In this paper, we propose a noval optimization algorithm for SVC to dynamically adjust the number of layers and optimize the transmission paths simultaneously. We establish the problem model based on the 0/1 knapsack model, and then solve it with Artificial Fish Swarm Algorithm. Additionally, the simulations are carried out on the Mininet platform, which show that our approach can dynamically adjust the number of layers and select the optimal paths at the same time. As a result, it can achieve an effective allocation of network resources which mitigates the congestion and reduces the loss of non-SVC stream. 展开更多
关键词 SVC SDN OpenFlow Mininet artificial fish swarm algorithm (AFSA) 0/1 knapsack model
下载PDF
基于IAFSA-WNN的短期电力负荷预测
15
作者 郭松林 王树业 《黑龙江科技大学学报》 2021年第6期777-781,共5页
针对短期电力负荷预测精度不高的问题,提出了一种IAFSA-WNN的短期电力负荷预测模型。通过灰狼优化算法优化人工鱼群算法的聚群和追尾行为,利用改进的人工鱼群算法优化小波神经网络的初始权值和阈值,提高负荷预测模型的预测性能,以24 h... 针对短期电力负荷预测精度不高的问题,提出了一种IAFSA-WNN的短期电力负荷预测模型。通过灰狼优化算法优化人工鱼群算法的聚群和追尾行为,利用改进的人工鱼群算法优化小波神经网络的初始权值和阈值,提高负荷预测模型的预测性能,以24 h电力负荷数据为样本,仿真验证预测短期电力负荷。结果表明,IAFSA-WNN模型预测结果相比小波神经网络模型,平均相对误差降低了1.41%,均方根相对误差降低了1.42%,IAFSA-WNN的负荷预测模型比WNN模型具有更好的预测精度。 展开更多
关键词 短期电力负荷预测 小波神经网络 人工鱼群算法 灰狼算法
下载PDF
考虑系统稳定边界的同步调相机励磁与升压变参数联合优化 被引量:1
16
作者 潘学萍 许一 +3 位作者 赵天骐 王宣元 谢欢 郭金鹏 《电力系统保护与控制》 EI CSCD 北大核心 2024年第8期45-54,共10页
现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先... 现有提升调相机动态无功特性的参数优化方法侧重于电磁参数的优化,这给生产企业带来较高的工艺要求和较大的成本压力。针对该问题提出考虑系统稳定约束的调相机励磁系统及升压变参数联合优化方法,分析其对电磁参数优化的可替代性。首先,推导了基于Park模型下调相机的无功频域特性,与6阶实用模型下的无功频域特性对比,基于调相机的Park模型可提升调相机动态无功特性的分析精度。然后,提出根据调相机并网系统的稳定边界确定参数的优化区间,采用频域灵敏度方法确定重点参数,并基于人工鱼群算法进行参数优化。最后,通过仿真结果表明,励磁系统与升压变参数的联合优化,可获得与仅优化电磁参数时相近的调相机动态无功性能,验证了电磁参数优化的可替代性,从而降低调相机的制造成本,扩大同步调相机的应用场合和范围。 展开更多
关键词 分布式调相机 动态无功特性 参数优化 无功电流增益 人工鱼群算法
下载PDF
基于PSO与AFSA的GNSS整周模糊度种群融合优化算法
17
作者 郭迎庆 詹洋 +3 位作者 张琰 王译那 徐赵东 李今保 《工程科学学报》 EI CSCD 北大核心 2024年第12期2246-2256,共11页
载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人... 载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人工鱼群算法(Artificial fish swarm algorithm, AFSA)全局优化性能好但收敛速度慢,因此融合两种算法的优点,提出一种GNSS整周模糊度种群融合优化算法(PSOAF).首先,通过载波相位双差方程求解整周模糊度的浮点解和对应的协方差矩阵.然后,采用反整数Cholesky算法对模糊度浮点解作降相关处理.其次,针对整数最小二乘估计的不足通过优化适应度函数来提高算法的收敛性和搜索性能.最后,通过PSOAF算法对整周模糊度进行解算.通过经典算例和试验研究表明:PSOAF算法可以更快地收敛于最优解,搜索效率也更为出色,解算的基线精度可以控制在10 mm以内,在短基线的实际情况下具有较高的应用价值. 展开更多
关键词 全球导航卫星系统(GNSS) 整周模糊度 粒子群算法 人工鱼群算法 融合算法
下载PDF
基于IAFSA-BP并行集成学习算法的大学生就业预测模型
18
作者 蒋正婷 袁章帅 闫瑞林 《价值工程》 2019年第19期232-234,共3页
随着我国高校毕业人数逐年增加,大学生“就业难”问题越发突出,其已然成为了社会广泛关注的热点之一。准确预测大学生的就业前景,提高当代大学生的就业率及就业质量引起了党中央和国家的高度重视。因此,本文通过将改进的人工鱼群算法优... 随着我国高校毕业人数逐年增加,大学生“就业难”问题越发突出,其已然成为了社会广泛关注的热点之一。准确预测大学生的就业前景,提高当代大学生的就业率及就业质量引起了党中央和国家的高度重视。因此,本文通过将改进的人工鱼群算法优化BP神经网络的权值和阈值,提出了基于IAFSA-BP神经网络并行集成学习算法的大学生就业预测模型,并将整理的数据集在matlab中进行仿真实验时达到了极佳的预测效果,以期该模型能为推动大学生高质量就业提供参考意见。 展开更多
关键词 BP神经网络 人工鱼群算法 并行集成学习 大学生就业预测模型
下载PDF
基于改进小波神经网络的实时系统任务流量预测方法
19
作者 李丹 陈勃琛 潘广泽 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期208-214,共7页
针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小... 针对当前航空装备实时系统对非周期实时任务无法预知难以实现可靠调度的困难,开展对航空装备实时系统非周期任务流量预测方法的研究。以小波神经网络为基础结合航空装备实时系统的特性建立任务流量预测模型,并提出利用人工鱼群算法对小波预测模型关键参数进行优化,避免陷入局部最优解,最终构建一种人工鱼群算法改进的小波神经网络任务流量预测系统。利用提出的预测模型开展实时任务流量预测对比仿真实验,实验结果表明,建立的基于改进小波神经网络的实时系统任务流量预测系统对非周期实时任务具有较高的预测精度,预测效果优于原始小波神经网络模型及T-S模糊神经网络模型。 展开更多
关键词 小波神经网络 人工鱼群算法 实时系统 流量预测
下载PDF
基于人工鱼群-遗传算法的多品种小批量零件数控加工工艺优化研究
20
作者 张天瑞 乔文澍 《制造技术与机床》 北大核心 2024年第5期152-159,共8页
基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗... 基于多品种小批量零件加工成本高的问题,基于人工鱼群-遗传算法(AFSA-GA)构建了数控机床能耗模型,以实现零件加工能耗下降。首先,将数控机床功率划分为各工序功率模型,基于功率模型与工作时间关系得出机床运转能耗模型,结合产品表面粗糙度模型,对各工序能耗模型及整体粗糙度进行归一化处理,形成整体能耗模型;其次,以能耗及粗糙度为目标函数,建立AFSA-GA算法,通过对各工序能耗求解得出最适当的机床功率及其所对应的能耗和表面粗糙度;最后,针对所获得的最优功率,进行优化结果的验证,为五轴机床的实际加工提供解决方案。 展开更多
关键词 加工工艺优化 多品种小批量 零件加工 人工鱼群-遗传算法
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部