期刊文献+
共找到161篇文章
< 1 2 9 >
每页显示 20 50 100
Research on Plant Species Identification Based on Improved Convolutional Neural Network
1
作者 Chuangchuang Yuan Tonghai Liu +2 位作者 Shuang Song Fangyu Gao Rui Zhang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第4期1037-1058,共22页
Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requiremen... Plant species recognition is an important research area in image recognition in recent years.However,the existing plant species recognition methods have low recognition accuracy and do not meet professional requirements in terms of recognition accuracy.Therefore,ShuffleNetV2 was improved by combining the current hot concern mechanism,convolution kernel size adjustment,convolution tailoring,and CSP technology to improve the accuracy and reduce the amount of computation in this study.Six convolutional neural network models with sufficient trainable parameters were designed for differentiation learning.The SGD algorithm is used to optimize the training process to avoid overfitting or falling into the local optimum.In this paper,a conventional plant image dataset TJAU10 collected by cell phones in a natural context was constructed,containing 3000 images of 10 plant species on the campus of Tianjin Agricultural University.Finally,the improved model is compared with the baseline version of the model,which achieves better results in terms of improving accuracy and reducing the computational effort.The recognition accuracy tested on the TJAU10 dataset reaches up to 98.3%,and the recognition precision reaches up to 93.6%,which is 5.1%better than the original model and reduces the computational effort by about 31%compared with the original model.In addition,the experimental results were evaluated using metrics such as the confusion matrix,which can meet the requirements of professionals for the accurate identification of plant species. 展开更多
关键词 Deep learning convolutional neural network plant identification model improvement
下载PDF
Object Recognition Algorithm Based on an Improved Convolutional Neural Network
2
作者 Zheyi Fan Yu Song Wei Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期139-145,共7页
In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted... In order to accomplish the task of object recognition in natural scenes,a new object recognition algorithm based on an improved convolutional neural network(CNN)is proposed.First,candidate object windows are extracted from the original image.Then,candidate object windows are input into the improved CNN model to obtain deep features.Finally,the deep features are input into the Softmax and the confidence scores of classes are obtained.The candidate object window with the highest confidence score is selected as the object recognition result.Based on AlexNet,Inception V1 is introduced into the improved CNN and the fully connected layer is replaced by the average pooling layer,which widens the network and deepens the network at the same time.Experimental results show that the improved object recognition algorithm can obtain better recognition results in multiple natural scene images,and has a higher degree of accuracy than the classical algorithms in the field of object recognition. 展开更多
关键词 object recognition selective search algorithm improved convolutional neural network(CNN)
下载PDF
A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images 被引量:2
3
作者 S.Velliangiri J.Premalatha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期625-645,共21页
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin... Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods. 展开更多
关键词 Adaptive Rood Pattern Search(ARPS) improved Crow Search Algorithm(ICSA) Enhanced convolutional neural network(ECNN) Viola Jones algorithm Speeded Up Robust Feature(SURF)
下载PDF
Improved Shark Smell Optimization Algorithm for Human Action Recognition 被引量:2
4
作者 Inzamam Mashood Nasir Mudassar Raza +3 位作者 Jamal Hussain Shah Muhammad Attique Khan Yun-Cheol Nam Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2023年第9期2667-2684,共18页
Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,p... Human Action Recognition(HAR)in uncontrolled environments targets to recognition of different actions froma video.An effective HAR model can be employed for an application like human-computer interaction,health care,person tracking,and video surveillance.Machine Learning(ML)approaches,specifically,Convolutional Neural Network(CNN)models had beenwidely used and achieved impressive results through feature fusion.The accuracy and effectiveness of these models continue to be the biggest challenge in this field.In this article,a novel feature optimization algorithm,called improved Shark Smell Optimization(iSSO)is proposed to reduce the redundancy of extracted features.This proposed technique is inspired by the behavior ofwhite sharks,and howthey find the best prey in thewhole search space.The proposed iSSOalgorithmdivides the FeatureVector(FV)into subparts,where a search is conducted to find optimal local features fromeach subpart of FV.Once local optimal features are selected,a global search is conducted to further optimize these features.The proposed iSSO algorithm is employed on nine(9)selected CNN models.These CNN models are selected based on their top-1 and top-5 accuracy in ImageNet competition.To evaluate the model,two publicly available datasets UCF-Sports and Hollywood2 are selected. 展开更多
关键词 Action recognition improved shark smell optimization convolutional neural networks machine learning
下载PDF
How to accurately extract large-scale urban land?Establishment of an improved fully convolutional neural network model
5
作者 Boling YIN Dongjie GUAN +4 位作者 Yuxiang ZHANG He XIAO Lidan CHENG Jiameng CAO Xiangyuan SU 《Frontiers of Earth Science》 SCIE CSCD 2022年第4期1061-1076,共16页
Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neur... Realizing accurate perception of urban boundary changes is conducive to the formulation of regional development planning and researches of urban sustainable development.In this paper,an improved fully convolution neural network was provided for perceiving large-scale urban change,by modifying network structure and updating network strategy to extract richer feature information,and to meet the requirement of urban construction land extraction under the background of large-scale low-resolution image.This paper takes the Yangtze River Economic Belt of China as an empirical object to verify the practicability of the network,the results show the extraction results of the improved fully convolutional neural network model reached a precision of kappa coefficient of 0.88,which is better than traditional fully convolutional neural networks,it performs well in the construction land extraction at the scale of small and medium-sized cities. 展开更多
关键词 improved fully convolutional neural network remote sensing image classification city boundary precision evaluation
原文传递
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:2
6
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:1
7
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
下载PDF
基于卷积神经网络的入侵昆虫识别研究
8
作者 黄亦其 鹿林飞 +2 位作者 沈豪 王福宽 乔曦 《中国农机化学报》 北大核心 2024年第7期222-227,261,共7页
现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷... 现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷积神经网络模型DenseNet121、MobileNetV3、ResNet101和ShuffleNet对其进行训练测试分析讨论。结果表明,在入侵昆虫综合识别系统识别功能后台算法应用上,MobileNetV3表现出更好的综合性能。根据MobileNetV3模型现有缺陷和模型特性,对MobileNetV3模型指定瓶颈层的注意力机制和激活函数进行改进,改进后模型的准确率为92.8%,单张测试集图像的平均识别时间0.012 s,相较于原MobileNetV3模型分别提高0.5%、缩短15.2%,可以很好满足多昆虫识别分类需求。 展开更多
关键词 入侵昆虫 卷积神经网络 模型改进 图像识别
下载PDF
基于改进Faster R-CNN与U-Net算法的桥梁病害识别与量化方法
9
作者 乔朋 梁志强 +3 位作者 段长江 马晨 王思龙 狄谨 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期627-638,共12页
为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,... 为实现桥梁病害检测的自动化,对基于图像处理技术的混凝土桥梁表观病害的智能识别和尺寸确定方法展开研究.提出基于改进Faster R-CNN算法的病害识别方法,利用K均值聚类和遗传算法对区域候选网络锚框进行优化设计;以裂缝预测区域为基础,提出ResNet34结合U-Net的裂缝形态提取方法,并结合裂缝形态学研究了裂缝像素宽度和长度的确定方法.结果表明:锚框优化设计可改进Faster R-CNN算法的表观病害识别效果,5类常见病害的预测准确率、召回率、平均精确率分别由68.40%、69.87%、74.64%提升到85.40%、83.59%、83.72%;利用病害预测框,结合改进U-Net算法的裂缝像素尺寸计算,可实现裂缝病害尺寸的自动测量;基于改进Faster R-CNN和改进U-Net的方法可实现混凝土桥梁常见病害的智能识别和尺寸量化,从而提高桥梁病害检测效率并促进桥梁技术状况评定的智能化. 展开更多
关键词 桥梁工程 表观病害识别 裂缝尺寸确定 改进Faster R-CNN 改进U-Net
下载PDF
基于改进SKNet-SVM的网络安全态势评估
10
作者 赵冬梅 孙明伟 +1 位作者 宿梦月 吴亚星 《应用科学学报》 CAS CSCD 北大核心 2024年第2期334-349,共16页
为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,... 为提高网络安全态势评估的准确率,增强稳定性与鲁棒性,提出一种基于改进选择性卷积核卷积神经网络和支持向量机的网络安全态势评估模型。首先,使用改进选择性卷积核代替传统卷积核进行特征提取,提高卷积神经网络感受野变化的自适应性,增强特征之间关联性。然后,将提取的特征输入到支持向量机中进行分类,并使用网格优化算法对支持向量机中的参数进行全局寻优。最后,根据网络攻击影响指标计算网络安全态势值。实验表明,基于改进选择性卷积核卷积神经网络和支持向量机的态势评估模型与传统的卷积神经网络搭建的态势评估模型相比,准确率更高,并且具有更强的稳定性和鲁棒性。 展开更多
关键词 网络安全态势评估 网络安全态势感知 改进选择性卷积核卷积神经网络 支持向量机 网格优化算法
下载PDF
基于改进机器学习的图书馆机器人自主避障控制研究
11
作者 李静 罗征 +1 位作者 闫振平 张县 《计算机测量与控制》 2024年第9期200-205,240,共7页
为控制图书馆机器人在行进过程中自动躲避障碍,达到理想工作效果,提出基于改进机器学习的图书馆机器人自主避障控制方法;采集图书馆机器人与目标障碍物距离信息,感知环境特征向量,当成卷积神经网络输入,经卷积、池化等操作,输出图书馆... 为控制图书馆机器人在行进过程中自动躲避障碍,达到理想工作效果,提出基于改进机器学习的图书馆机器人自主避障控制方法;采集图书馆机器人与目标障碍物距离信息,感知环境特征向量,当成卷积神经网络输入,经卷积、池化等操作,输出图书馆机器人对当前环境感知结果,该结果经输入输出变量模糊化、模糊推理以及输出变量解模糊等操作后,实现图书馆机器人自主避障无冲突运行;实验结果表明:该方法自主避障控制效果较好,避障行驶距离短,高速运行时反应更快,能够避开多个障碍物,识别分类结果与实际感知环境类型一致。 展开更多
关键词 改进机器学习 图书馆机器人 自主避障控制 粒子群算法 卷积神经网络 模糊PID算法
下载PDF
基于改进深度学习的主动式通信网络入侵行为自适应识别算法
12
作者 伍均玺 林峰 高红云 《微型电脑应用》 2024年第4期9-12,共4页
针对外界参数变化较大时会严重影响识别准确率的问题,设计一种基于改进深度学习的主动式通信网络入侵行为自适应识别算法。归一化主动式通信数据,将卷积神经网络和BGRU进行结合,构建一个端到端检测攻击的改进型的循环神经网络,优化激活... 针对外界参数变化较大时会严重影响识别准确率的问题,设计一种基于改进深度学习的主动式通信网络入侵行为自适应识别算法。归一化主动式通信数据,将卷积神经网络和BGRU进行结合,构建一个端到端检测攻击的改进型的循环神经网络,优化激活函数与逻辑回归分类器,稳定且自适应地识别主动式通信网络入侵行为。实验结果表明,所提算法在卷积核大小和学习率改变的情况下仍能保持较高的识别准确性,主动式通信网络入侵行为的识别结果具有自适应性。 展开更多
关键词 改进深度学习 网络入侵检测 通信网络入侵 自适应识别 混合卷积神经网络
下载PDF
基于深度学习及改进模糊KMeans的寻常型银屑病智能诊断方法 被引量:1
13
作者 石丽平 杜笑青 +2 位作者 李静 刘丽娟 张国强 《中国医学物理学杂志》 CSCD 2024年第2期253-257,共5页
为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出... 为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。 展开更多
关键词 寻常型银屑病 改进模糊KMeans聚类算法 VGG13 深度卷积神经网络模型
下载PDF
基于MISSA-CNN-BiLSTM模型的尾矿坝位移预测
14
作者 刘迪 杨辉 +2 位作者 卢才武 阮顺领 江松 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期145-154,共10页
为应对尾矿坝位移预测所面临的复杂情况和精度要求,提出一种基于多算法耦合的尾矿坝位移动态预测模型。首先,基于时间序列分解模型将累计位移分为趋势项和周期项,利用高斯回归时间序列预测模型预测趋势项位移;然后,运用不同Copula函数... 为应对尾矿坝位移预测所面临的复杂情况和精度要求,提出一种基于多算法耦合的尾矿坝位移动态预测模型。首先,基于时间序列分解模型将累计位移分为趋势项和周期项,利用高斯回归时间序列预测模型预测趋势项位移;然后,运用不同Copula函数研究诱发因素与周期项位移的整体相关性,鉴于周期项位移影响因素多样性与强非线性的特点,采用多策略融合的改进麻雀搜索算法改进麻雀搜索算法(MISSA)-卷积神经网络(CNN)-双向长短期记忆(BiLSTM)模型预测周期项位移;最后,将高斯回归趋势项位移预测值和MISSA-CNN-BiLSTM周期项位移预测值叠加。结果表明:尾矿坝累积位移预测值与实测值基本一致,预测结果相关性系数R为0.996,均方根误差(RMSE)为0.13 mm,建立的MISSA-CNN-BiLSTM多算法耦合模型预测精度较高,且能较好地预测尾矿坝位移的阶跃型变化。 展开更多
关键词 改进麻雀搜索算法(MISSA) 卷积神经网络(CNN) 双向长短期记忆(BiLSTM) 尾矿坝 位移预测 深度学习模型
下载PDF
不平衡数据下基于改进门控卷积网络的轴承故障诊断
15
作者 郗昌盛 梁小夏 +3 位作者 田少宁 杨杰 冯国金 甄冬 《噪声与振动控制》 CSCD 北大核心 2024年第4期153-160,共8页
深度学习在滚动轴承故障诊断中具有广泛的应用,然而,现实中的监测数据往往具有不平衡性,这就会对模型的诊断性能产生很大影响。因此,提出一种基于改进门控卷积神经网络(Improved Gated Convolutional Neural Network,IGCNN)的故障诊断方... 深度学习在滚动轴承故障诊断中具有广泛的应用,然而,现实中的监测数据往往具有不平衡性,这就会对模型的诊断性能产生很大影响。因此,提出一种基于改进门控卷积神经网络(Improved Gated Convolutional Neural Network,IGCNN)的故障诊断方法,用于数据不平衡条件下的故障诊断。首先,提出改进门控卷积层以增强特征提取能力,通过批量归一化技术提高模型的泛化能力。然后,使用标签分布感知边界(Label-distribution-aware Margin,LDAM)损失函数提高模型对少数类的敏感度,减小数据不平衡对模型的影响。将所提算法应用在两组故障轴承数据上,在数据不平衡率为20:1的情况下,所提算法仍然可达到92.71%和94.47%的故障识别率,而对比的其他主流深度学习模型在该情况下只有60%~72%的准确率,表明所提方法在数据集严重不平衡情况下具有很强的诊断能力和鲁棒性。 展开更多
关键词 故障诊断 数据不平衡 改进门控卷积神经网络 标签分布感知边界损失函数 滚动轴承
下载PDF
基于ICS优化RBF的水库水质三维预测方法 被引量:1
16
作者 谢再秘 贾宝柱 +1 位作者 王骥 莫春梅 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期306-314,共9页
针对已有水质预测模型在数据降噪、网络参数初始值设置和优化、精度提高等方面能力的不足,构建了一种优化的水质三维预测模型。利用主成分分析算法筛选出水质关键参数,并基于自适应噪声的完全集合经验模态分解算法结合小波阈值模型对三... 针对已有水质预测模型在数据降噪、网络参数初始值设置和优化、精度提高等方面能力的不足,构建了一种优化的水质三维预测模型。利用主成分分析算法筛选出水质关键参数,并基于自适应噪声的完全集合经验模态分解算法结合小波阈值模型对三维水质参数和气象数据降噪处理,使用3维卷积神经网络(Three-dimensional convolutional neural networks,3-D CNN)提取出特征数据集,自编码器(Autoencoder,AE)获得径向基函数(Radial basis function,RBF)网络参数初始化值,改进布谷鸟搜索算法(Improved cuckoo search,ICS)优化更新网络中超参数动态初始化值。广东省湛江市徐闻县大水桥水库区域22个典型在线监测站点以及6个手持监测点的实测数据对比验证结果表明,浊度和藻密度分别与总氮含量强正相关,叶绿素含量与气温强正相关,所提出的水质预测模型在5个典型精准性评价指标方面优于已有文献方法。研究成果可为管理部门和研究者对水质监测提供参考。 展开更多
关键词 水质三维预测 改进布谷鸟搜索算法 卷积神经网络 自编码器 径向基神经网络
下载PDF
基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法
17
作者 殷军 殷学功 +4 位作者 闫立东 崔岩 张尧 王小朋 李宇航 《电气自动化》 2024年第4期90-92,95,共4页
针对传统小波变换法去除干式空心电抗器红外图像中夹带的噪声效果不理想的问题,提出了基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法。首先利用卷积神经网络中的残差学习对图像中混合特征信息进行提取;然后通过改进... 针对传统小波变换法去除干式空心电抗器红外图像中夹带的噪声效果不理想的问题,提出了基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法。首先利用卷积神经网络中的残差学习对图像中混合特征信息进行提取;然后通过改进小波变换对图像进行小波分解,并将分解后的分量输入至网络中进行训练;进而通过残差学习增强图像纹理细节信息,解决了传统图像去噪方法的不足;最后进行仿真比较。结果表明,所提方法可以降低网络计算难度,加快训练速度,同时具有良好的去噪性能,优于传统图像去噪方法。 展开更多
关键词 干式空心电抗器 红外图像去噪 改进小波变换 阈值函数 卷积神经网络
下载PDF
基于改进YOLOv7的金属表面小缺陷检测研究
18
作者 崔伟 李震宇 余慧杰 《机电工程》 CAS 北大核心 2024年第9期1649-1655,共7页
传统的金属表面缺陷检测是通过人工目测完成的,由于人工目测方法存在效率低下、漏检率高、劳动强度大等缺点,难以满足金属表面缺陷检测的效率和精度要求。针对工业生产过程中金属表面的小缺陷人工检测效率低等问题,提出了一种基于改进的... 传统的金属表面缺陷检测是通过人工目测完成的,由于人工目测方法存在效率低下、漏检率高、劳动强度大等缺点,难以满足金属表面缺陷检测的效率和精度要求。针对工业生产过程中金属表面的小缺陷人工检测效率低等问题,提出了一种基于改进的YOLOv7算法的金属表面小缺陷检测方法。首先,建立了包含5种金属表面小缺陷的数据集;然后,设计了扩散卷积,利用步长改变了卷积核中特征点的间距,扩大了卷积层的感受野;设计了方向注意力模块,通过分割输入特征图,在水平方向和垂直方向上进行了特征提取,在通道维度上引入了注意力机制,根据通道的权重,完成了对输出通道数目的重新调整,增强了YOLOv7对小缺陷的位置感知;最后,研究了不同算法在金属表面小缺陷数据集上的目标检测结果,设计了消融实验,对改进策略进行了性能分析。研究结果表明:在相同训练策略下,与传统的YOLOv7算法模型相比,改进后的YOLOv7算法对小缺陷的检测效率为91 fps,平均检测精度为88.0%,较原模型提高了3.6%。在实际生产中可以采用该方法精确检测复杂背景下的金属表面小缺陷。 展开更多
关键词 缺陷检测效率和精度 改进YOLOv7算法 深度学习 扩散卷积 注意力机制 卷积神经网络
下载PDF
基于改进迁移学习的光通信网络流量数据连续插值研究
19
作者 孙家宝 邱伊健 秦坤 《激光杂志》 CAS 北大核心 2024年第8期120-125,共6页
光通信网络流量数据具有大规模和高维度的特点,而数据量纲不一致,数据之间的差异会被放大,使得插值效果不理想,所以提出基于改进迁移学习的光通信网络流量数据连续插值方法。通过Box-Cox变换法对流量数据展开标准化处理,统一数据量级与... 光通信网络流量数据具有大规模和高维度的特点,而数据量纲不一致,数据之间的差异会被放大,使得插值效果不理想,所以提出基于改进迁移学习的光通信网络流量数据连续插值方法。通过Box-Cox变换法对流量数据展开标准化处理,统一数据量级与量纲。通过深度学习理论与VNet技术改进卷积神经网络,通过更新网络参数使连续插值结果与理想数据进行匹配,得到流量数据连续插值结果。实验表明,所提方法的信噪比始终高于27.83 dB,频率-波形分布图与理想数据的频率-波形分布图相似度最高,决定系数在0.8以上,能够获得高质量插值结果。 展开更多
关键词 改进迁移学习 光通信网络 流量数据 连续插值 网络探针技术 Box-Cox变换 改进卷积神经网络
下载PDF
面向多复杂场景环境的敞车车号辨识研究
20
作者 薛峰 于国丞 +3 位作者 李世杰 凌烈鹏 张峰峰 陈峰炜 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1162-1169,共8页
针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深... 针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深度可分离卷积的敞车车号特征提取网络设计。提出基于改进卷积循环神经网络的车号定位识别模型,主要针对识别网络模型结构进行设计。通过不同环境下采集的敞车车厢图片对本文提出的方法进行验证。结果表明:本文提出的车号定位方法的准确率为0.94,车号识别的准确率为0.97。 展开更多
关键词 车号定位 深度可分离卷积 特征提取 改进卷积循环神经网络 特征金字塔 字符识别 铁路货运 深度学习
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部