期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Emotional dialog generation via multiple classifiers based on a generative adversarial network
1
作者 Wei CHEN Xinmiao CHEN Xiao SUN 《Virtual Reality & Intelligent Hardware》 2021年第1期18-32,共15页
Background Human-machine dialog generation is an essential topic of research in the field of natural language processing.Generating high-quality,diverse,fluent,and emotional conversation is a challenging task.Based on... Background Human-machine dialog generation is an essential topic of research in the field of natural language processing.Generating high-quality,diverse,fluent,and emotional conversation is a challenging task.Based on continuing advancements in artificial intelligence and deep learning,new methods have come to the forefront in recent times.In particular,the end-to-end neural network model provides an extensible conversation generation framework that has the potential to enable machines to understand semantics and automatically generate responses.However,neural network models come with their own set of questions and challenges.The basic conversational model framework tends to produce universal,meaningless,and relatively"safe"answers.Methods Based on generative adversarial networks(GANs),a new emotional dialog generation framework called EMC-GAN is proposed in this study to address the task of emotional dialog generation.The proposed model comprises a generative and three discriminative models.The generator is based on the basic sequence-to-sequence(Seq2Seq)dialog generation model,and the aggregate discriminative model for the overall framework consists of a basic discriminative model,an emotion discriminative model,and a fluency discriminative model.The basic discriminative model distinguishes generated fake sentences from real sentences in the training corpus.The emotion discriminative model evaluates whether the emotion conveyed via the generated dialog agrees with a pre-specified emotion,and directs the generative model to generate dialogs that correspond to the category of the pre-specified emotion.Finally,the fluency discriminative model assigns a score to the fluency of the generated dialog and guides the generator to produce more fluent sentences.Results Based on the experimental results,this study confirms the superiority of the proposed model over similar existing models with respect to emotional accuracy,fluency,and consistency.Conclusions The proposed EMC-GAN model is capable of generating consistent,smooth,and fluent dialog that conveys pre-specified emotions,and exhibits better performance with respect to emotional accuracy,consistency,and fluency compared to its competitors. 展开更多
关键词 Emotional dialog generation Sequence-to-sequence model Emotion classification Generative adversarial networks Multiple classifiers
下载PDF
基于改进生成对抗网络的工业炉燃烧器噪声分类研究
2
作者 王陆阳 张晓军 赵旭鹏 《工业加热》 CAS 2024年第6期62-66,共5页
工业炉燃烧器噪声分类过程中易受到不均匀样本、非线性和工作环境等问题的干扰,噪声信号分离难度比较大,导致分类效果不佳。为了解决上述问题,提出基于改进生成对抗网络的工业炉燃烧器噪声分类方法。采用组合传感器采集工业炉燃烧器信号... 工业炉燃烧器噪声分类过程中易受到不均匀样本、非线性和工作环境等问题的干扰,噪声信号分离难度比较大,导致分类效果不佳。为了解决上述问题,提出基于改进生成对抗网络的工业炉燃烧器噪声分类方法。采用组合传感器采集工业炉燃烧器信号,通过声能叠加算法分离出噪声信号。采用小波包分解算法提取噪声信号特征,将提取的特征输入到改进后的生成对抗网络中,改进生成对抗网络通过分类函数完成工业炉燃烧器噪声分类。实验结果表明,所提方法的工业炉燃烧器噪声信号特征提取效果好、分类精度高、分类时间短,分类结果具备可靠性。 展开更多
关键词 改进生成对抗网络 工业炉燃烧器 噪声分类 声能叠加算法 小波包分解算法
下载PDF
基于改进ACGAN的永磁同步电机数据扩张方法 被引量:1
3
作者 许小伟 韦道明 +3 位作者 严运兵 刘哲宇 敖金艳 占柳 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2023年第10期114-121,共8页
永磁同步电机(permanent magnet synchronous motor,PMSM)的监测数据呈现出非平稳、非线性、多源异构性和价值低密度性等特点,而仿真数据难以准确地模拟电机故障类型和故障程度,使得正常数据与故障数据的样本呈现严重不均衡现象,导致故... 永磁同步电机(permanent magnet synchronous motor,PMSM)的监测数据呈现出非平稳、非线性、多源异构性和价值低密度性等特点,而仿真数据难以准确地模拟电机故障类型和故障程度,使得正常数据与故障数据的样本呈现严重不均衡现象,导致故障诊断的模型训练容易出现过拟合、精度低等问题。本文提出了一种改进辅助分类生成对抗网络(auxiliary classification generation adversarial network,ACGAN),通过对原始样本的分布特性进行学习,实现对PMSM实测故障数据的扩张,为电机的故障诊断和健康评估提供数据基础。首先,针对ACGAN网络收敛性差和梯度易消失或爆炸的问题,使用Wasserstein距离约束生成数据的重建损失,利用梯度惩罚代替权值剪裁对模型进行优化,解决模型训练不稳定问题;其次,剖析数据之间的变化关系和历史变化规律,在生成器中引入循环神经网络提高生成数据质量;最后,利用PMSM匝间短路的故障数据,对比分析ROS、SMOTE、ADASYN及改进ACGAN 4种数据扩张方法对提升故障诊断模型性能的有效性。分析结果表明,与其他数据扩张方法相比,改进ACGAN方法的模型训练较稳定、收敛速度较快,扩张数据质量较高。 展开更多
关键词 永磁同步电机 数据扩张 改进辅助分类生成对抗网络 梯度惩罚 循环神经网络
下载PDF
基于双交叉熵的自适应残差卷积图像分类算法 被引量:1
4
作者 李伟 黄鹤鸣 《计算机工程与设计》 北大核心 2023年第12期3670-3676,共7页
为弥补卷积神经网络在图像分类方面对颜色特征的不敏感,并生成更逼真的图像样本,提出一种基于双交叉熵的自适应残差卷积图像分类算法。将双交叉熵损失函数应用到深度卷积生成对抗网络中的判别模型;结合图像的主颜色特征和残差卷积神经... 为弥补卷积神经网络在图像分类方面对颜色特征的不敏感,并生成更逼真的图像样本,提出一种基于双交叉熵的自适应残差卷积图像分类算法。将双交叉熵损失函数应用到深度卷积生成对抗网络中的判别模型;结合图像的主颜色特征和残差卷积神经网络提取的空间位置特征,运用改进的差分演化算法解决多特征融合权重系数的设定问题。实验结果表明,所提算法与传统的CNN算法相比,准确率明显提高10.75个百分点。双交叉熵损失函数可以提高判别模型区分生成图像与真实图像的能力,迫使生成模型生成更逼真的图像样本。 展开更多
关键词 双交叉熵损失 生成对抗网络 卷积神经网络 多特征融合 自适应权重 改进的差分演化算法 图像分类
下载PDF
基于辅助分类网络的跨领域文本情感分类
5
作者 马娜 温廷新 +1 位作者 贾旭 李晓会 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期721-733,共13页
为了使源域与目标域中同类情感文本准确对齐,且尽可能增大不同情感文本特征差异,提出了一种具有加权对抗网络的域适应模型。提出了一种主分类网络与辅助分类网络相结合的网络结构,主分类网络用于对源域文本进行有监督学习,辅助分类网络... 为了使源域与目标域中同类情感文本准确对齐,且尽可能增大不同情感文本特征差异,提出了一种具有加权对抗网络的域适应模型。提出了一种主分类网络与辅助分类网络相结合的网络结构,主分类网络用于对源域文本进行有监督学习,辅助分类网络用来提高文本特征的可区分度;提出了一种多对抗网络权重计算方法,实现域间同类样本的准确对齐。实验结果表明:对于Amazon数据集,提出的模型对于目标域中文本的平均识别准确率可达84.22%,比对比模型提升了2.07%,说明该模型可将优化得到的特征提取器与特征分类器同时较好的适用于源域与目标域中,从而对不同领域文本分析仿真建模提供了可靠的数据。 展开更多
关键词 文本情感分类 域适应 对抗网络 辅助分类网络
下载PDF
基于ACGAN的图像识别算法 被引量:11
6
作者 周林勇 谢晓尧 +2 位作者 刘志杰 谭宏卫 游善平 《计算机工程》 CAS CSCD 北大核心 2019年第10期246-252,259,共8页
针对基于辅助分类器生成对抗网络(ACGAN)的图像分类算法在训练过程中稳定性低且分类效果差的问题,提出一种改进的图像识别算法CP-ACGAN。对于网络结构,在判别网络的输出层取消样本的真假判别,只输出样本标签的后验估计并引入池化层。对... 针对基于辅助分类器生成对抗网络(ACGAN)的图像分类算法在训练过程中稳定性低且分类效果差的问题,提出一种改进的图像识别算法CP-ACGAN。对于网络结构,在判别网络的输出层取消样本的真假判别,只输出样本标签的后验估计并引入池化层。对于损失函数,除真实样本的交叉熵损失外,在判别网络中增加生成样本的条件控制标签及后验估计间的交叉熵损失。在此基础上,利用真假样本的交叉熵损失及属性重构生成器和判别器的损失函数。在MNSIT、CIFAR10、CIFAR100数据集上的实验结果表明,与ACGAN算法、CNN算法相比,该算法具有较好的分类效果与稳定性,且分类准确率分别高达99.62%、79.07%、48.03%。 展开更多
关键词 生成对抗网络 辅助分类器生成对抗网络 特征提取 图像分类 特征匹配
下载PDF
融合VAE和StackGAN的零样本图像分类方法 被引量:9
7
作者 张冀 曹艺 +2 位作者 王亚茹 赵文清 翟永杰 《智能系统学报》 CSCD 北大核心 2022年第3期593-601,共9页
零样本分类算法旨在解决样本极少甚至缺失类别情况下的分类问题。随着深度学习的发展,生成模型在零样本分类中的应用取得了一定的突破,通过生成缺失类别的图像,将零样本图像分类转化为传统的基于监督学习的图像分类问题,但生成图像的质... 零样本分类算法旨在解决样本极少甚至缺失类别情况下的分类问题。随着深度学习的发展,生成模型在零样本分类中的应用取得了一定的突破,通过生成缺失类别的图像,将零样本图像分类转化为传统的基于监督学习的图像分类问题,但生成图像的质量不稳定,如细节缺失、颜色失真等,影响图像分类准确性。为此,提出一种融合变分自编码(variational auto-encoder,VAE)和分阶段生成对抗网络(stack generative adversarial networks,StackGAN)的零样本图像分类方法,基于VAE/GAN模型引入StackGAN,用于生成缺失类别的数据,同时使用深度学习方法训练并获取各类别的句向量作为辅助信息,构建新的生成模型stc-CLS-VAEStackGAN,提高生成图像的质量,进而提高零样本图像分类准确性。在公用数据集上进行对比实验,实验结果验证了本文方法的有效性与优越性。 展开更多
关键词 深度学习 零样本学习 图像分类 变分自编码器 生成对抗网络 分阶段网络 句向量 辅助信息
下载PDF
基于生成对抗网络的低分化宫颈癌病理图像分类 被引量:1
8
作者 李晨 张家伟 +1 位作者 张昊 汪茜 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第7期1054-1060,1064,共8页
使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试... 使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试集相同的情况下,该方法可以将总体分类准确率提升约2. 5%,尤其对低分化宫颈癌病理图像有显著效果.通过GAN解决了组织病理学图像无方向性、内容复杂、前景目标规则性差等问题,证明了该方法的有效性及发展潜力. 展开更多
关键词 宫颈癌辅助诊断 组织病理学图像分类 生成对抗网络 特征提取 K-MEANS聚类
下载PDF
基于鉴别模型和对抗损失的无监督域自适应方法 被引量:4
9
作者 赵文仓 袁立镇 徐长凯 《高技术通讯》 EI CAS 北大核心 2020年第7期698-706,共9页
对于许多任务而言,收集注释良好的图像数据集来训练深度学习算法成本过高且耗时,而仅在渲染图像训练的模型通常无法推广到真实图像。针对上述问题,无监督域自适应算法试图在2个域之间映射一些表示或提取域不变的特征,将2个域映射到共同... 对于许多任务而言,收集注释良好的图像数据集来训练深度学习算法成本过高且耗时,而仅在渲染图像训练的模型通常无法推广到真实图像。针对上述问题,无监督域自适应算法试图在2个域之间映射一些表示或提取域不变的特征,将2个域映射到共同的特征空间。本文结合源域的有标签数据和目标域的无标签数据,提出了基于生成对抗网络(GAN)架构的无监督域自适应方法。方法使用鉴别模型,无需权重共享、对抗损失和辅助分类任务,以无监督的方式学习从一个域到另一个域的变换。对抗鉴别的无监督域自适应方法能有效减少训练域和测试域分布之间的差异,减轻域移位的有害影响,并显著地提高识别率。实验结果证明对抗鉴别方法比其他域自适应方法更有效且更简单,扩充样本的同时提高了网络的泛化性能。 展开更多
关键词 深度学习 无监督 域自适应 生成对抗网络(GAN) 辅助分类任务
下载PDF
基于改进ACGAN算法的车道排队车辆估计及其分类
10
作者 郭海锋 杨宪赞 金峻臣 《高技术通讯》 EI CAS 北大核心 2020年第11期1169-1177,共9页
针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采... 针对传统模型驱动的排队车辆研究中构建概率分布困难、建模繁琐等问题,结合双向长短时记忆(Bi-LSTM)网络和辅助分类器生成对抗网络(ACGAN)的特点,提出一种数据驱动的车道级排队车辆估计算法。该算法无需对交叉口空间关系建模,其生成器采用Bi-LSTM结构,以速度序列为输入,根据速度与排队车辆的时间相关性,生成最小、最大排队车辆。判别器来自ACGAN,在区分真假样本的同时实现排队车辆到拥堵等级标签的分类。同时,为避免网络训练不稳定、梯度消失的问题,舍弃原ACGAN的真假二分类任务,引入Wasserstein散度来衡量真实序列与生成序列的分布距离,并对相应的目标函数进行优化。结果表明,与其他算法相比,该算法在分类准确率方面提高了3.96%~9.62%,同时总体估计误差最小,验证了利用速度估计车道排队车辆的可行性。 展开更多
关键词 辅助分类器生成对抗网络(ACGAN) 双向长短时记忆(Bi-LSTM) Wasserstein散度 车道级排队车辆估计 分类
下载PDF
一种用于肺结节恶性度分类的生成对抗网络 被引量:12
11
作者 徐久强 洪丽萍 +1 位作者 朱宏博 赵海 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第11期1556-1561,共6页
针对肺结节数据集中良恶性样本数比例失衡的问题,首次引入深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGAN)模型,该模型根据输入的肺结节图像,生成与输入图像具有相似纹理特征的肺结节并将生成图像用... 针对肺结节数据集中良恶性样本数比例失衡的问题,首次引入深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGAN)模型,该模型根据输入的肺结节图像,生成与输入图像具有相似纹理特征的肺结节并将生成图像用于训练DCGAN模型.此外,将图像来源分类问题改为图像来源分类和肺结节等级1~5分类问题,从而增强了DCGAN模型的抗噪能力和实现了DCGAN模型对肺结节的等级分类.实验表明,改进的DCGAN中G模型在生成图像时具有良好的抗噪能力且生成图像中大约有90. 42%的图像判别为真实图像,D模型对肺结节图像的等级分类具有较好的判别能力且肺结节等级分类准确率为70. 89%,肺结节良恶性分类准确率为80. 13%. 展开更多
关键词 肺结节 深度卷积生成对抗网络(DCGAN) 纹理特征 改进DCGAN 肺结节等级分类
下载PDF
基于辅助分类生成对抗网络的纸币红外特征鉴伪算法
12
作者 陈小静 曹语含 张学东 《辽宁科技大学学报》 CAS 2021年第1期50-55,80,共7页
针对假币的特征未知以及样本数量不平衡的局限性问题,提出基于半监督辅助分类生成对抗网络的纸币红外特征鉴伪算法。辅助分类生成对抗模型可以扩充样本的数据集,经过半监督的方式训练得到分类器进行分类,实现对纸币红外特征的鉴伪。实... 针对假币的特征未知以及样本数量不平衡的局限性问题,提出基于半监督辅助分类生成对抗网络的纸币红外特征鉴伪算法。辅助分类生成对抗模型可以扩充样本的数据集,经过半监督的方式训练得到分类器进行分类,实现对纸币红外特征的鉴伪。实验结果表明,该算法能提高假币鉴伪的准确率以及泛化能力。 展开更多
关键词 红外纸币鉴伪 辅助分类生成对抗网络 半监督
下载PDF
COVID-19 Automatic Detection Using Deep Learning
13
作者 Yousef Sanajalwe Mohammed Anbar Salam Al-E’mari 《Computer Systems Science & Engineering》 SCIE EI 2021年第10期15-35,共21页
The novel coronavirus disease 2019(COVID-19)is a pandemic disease that is currently affecting over 200 countries around the world and impacting billions of people.The first step to mitigate and control its spread is t... The novel coronavirus disease 2019(COVID-19)is a pandemic disease that is currently affecting over 200 countries around the world and impacting billions of people.The first step to mitigate and control its spread is to identify and isolate the infected people.But,because of the lack of reverse transcription polymerase chain reaction(RT-CPR)tests,it is important to discover suspected COVID-19 cases as early as possible,such as by scan analysis and chest X-ray by radiologists.However,chest X-ray analysis is relatively time-consuming since it requires more than 15 minutes per case.In this paper,an automated novel detection model of COVID-19 cases is proposed to perform real-time detection of COVID-19 cases.The proposed model consists of three main stages:image segmentation using Harris Hawks optimizer,synthetic image augmentation using an enhanced Wasserstein And Auxiliary Classifier Generative Adversarial Network,and image classification using Conventional Neural Network.Raw chest X-ray images datasets are used to train and test the proposed model.Experiments demonstrate that the proposed model is very efficient in the automatic detection of COVID-19 positive cases.It achieved 99.4%accuracy,99.15%precision,99.35%recall,99.25%F-measure,and 98.5%specificity. 展开更多
关键词 Conventional neural network COVID-19 deep learning enhanced Wasserstein and auxiliary classifier generative adversarial network image classification image segmentation chest x-rays
下载PDF
基于改进ACGAN的钢表面缺陷视觉检测方法 被引量:2
14
作者 李可 祁阳 +2 位作者 宿磊 顾杰斐 苏文胜 《机械工程学报》 EI CAS CSCD 北大核心 2022年第24期32-40,共9页
为提高小样本环境下钢表面缺陷检测精度,提出一种基于改进辅助分类生成对抗网络(Auxiliary classifier generative adversarial network,ACGAN)的钢表面缺陷检测方法。利用残差块优化ACGAN的网络结构,提高模型的特征提取能力;其次,为提... 为提高小样本环境下钢表面缺陷检测精度,提出一种基于改进辅助分类生成对抗网络(Auxiliary classifier generative adversarial network,ACGAN)的钢表面缺陷检测方法。利用残差块优化ACGAN的网络结构,提高模型的特征提取能力;其次,为提高模型训练的稳定性,在网络的卷积层中添加谱范数归一化,防止模型异常的梯度变化;基于正-未标记分类的思想优化判别器的损失函数,提高生成样本的质量;同时,为缓解生成对抗网络的模式崩塌问题,在损失函数中添加梯度惩罚来约束判别器的梯度;通过生成器和判别器的对抗优化训练实现样本扩充。通过对钢表面缺陷数据集的试验,验证了提出的方法能准确有效地实现小样本环境下钢表面缺陷检测。与经典的SVM、ResNet50以及一些小样本分类模型相比,所提方法具有更高的检测精度。 展开更多
关键词 钢表面缺陷检测 辅助分类生成对抗网络 小样本 梯度惩罚
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部