We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical struc...We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance.展开更多
The objective of this study is to find an effective method to improve Voc without Jsc loss for Cu2ZnSnSe4 (CZTSe) thin film solar cells, which have been fabricated by the one step co-evaporation technique. Surface s...The objective of this study is to find an effective method to improve Voc without Jsc loss for Cu2ZnSnSe4 (CZTSe) thin film solar cells, which have been fabricated by the one step co-evaporation technique. Surface sulfurization of CZTSe thin films is carried out by using one technique that does not utilize toxic H2S gas; a sequential evaporation of SnS after CZTSe deposition and the annealing of CZTSe thin films in selenium vapor. A Cu2ZnSn(S, Se)4 (CZTSSe) thin layer is grown on the surface of the CZTSe thin film after the annealing. The conversion efficiency of the completed device is improved due to the enhancement of Voc, which could be attributed to the formation of a hole-recombination barrier at the surface or the passivation of the surface and grain boundary by S incorporation.展开更多
为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer...为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。展开更多
文摘We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20120031110039
文摘The objective of this study is to find an effective method to improve Voc without Jsc loss for Cu2ZnSnSe4 (CZTSe) thin film solar cells, which have been fabricated by the one step co-evaporation technique. Surface sulfurization of CZTSe thin films is carried out by using one technique that does not utilize toxic H2S gas; a sequential evaporation of SnS after CZTSe deposition and the annealing of CZTSe thin films in selenium vapor. A Cu2ZnSn(S, Se)4 (CZTSSe) thin layer is grown on the surface of the CZTSe thin film after the annealing. The conversion efficiency of the completed device is improved due to the enhancement of Voc, which could be attributed to the formation of a hole-recombination barrier at the surface or the passivation of the surface and grain boundary by S incorporation.
文摘为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。