To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)mo...To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN.展开更多
光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization...光伏阵列输出在不同工况下具有单峰或多峰特性.针对因最大功率点跟踪(maximum power point tracking,简称MPPT)精度不高、跟踪时间较长而导致光伏发电效率低下的问题,提出一种改进的量子粒子群优化(quantum particle swarm optimization,简称QPSO)算法.采用Logistic混沌映射初始化粒子种群;在种群进化前期将反向学习策略引入惯性权重自适应调整的量子粒子群优化(dynamically changing weights quantum-behaved particle swarm optimization,简称DCWQPSO),扩大种群搜索范围,提高种群的全局搜索能力;在种群进化后期将模拟退火机制引入DCWQPSO,提高种群收敛速度,并对粒子群进行柯西变异,增强粒子的多样性,提升局部搜索能力.Matlab仿真结果表明:相对其他4种算法,该文提出的改进QPSO算法的跟踪时间更短、跟踪精度更高.因此,该文算法具有优越性.展开更多
基金supported in part by the National Key Research and Development Program of China(No.2018YFB1500800)the National Natural Science Foundation of China(No.51807134)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology(No.EERI_KF20200014)。
文摘To improve energy efficiency and protect the environment,the integrated energy system(IES)becomes a significant direction of energy structure adjustment.This paper innovatively proposes a wavelet neural network(WNN)model optimized by the improved particle swarm optimization(IPSO)and chaos optimization algorithm(COA)for short-term load prediction of IES.The proposed model overcomes the disadvantages of the slow convergence and the tendency to fall into the local optimum in traditional WNN models.First,the Pearson correlation coefficient is employed to select the key influencing factors of load prediction.Then,the traditional particle swarm optimization(PSO)is improved by the dynamic particle inertia weight.To jump out of the local optimum,the COA is employed to search for individual optimal particles in IPSO.In the iteration,the parameters of WNN are continually optimized by IPSO-COA.Meanwhile,the feedback link is added to the proposed model,where the output error is adopted to modify the prediction results.Finally,the proposed model is employed for load prediction.The experimental simulation verifies that the proposed model significantly improves the prediction accuracy and operation efficiency compared with the artificial neural network(ANN),WNN,and PSO-WNN.