期刊文献+
共找到107篇文章
< 1 2 6 >
每页显示 20 50 100
基于自适应噪声完全集合经验模态分解与BiLSTM-Transformer的锂离子电池剩余使用寿命预测
1
作者 刘斌 吉春霖 +2 位作者 曹丽君 武欣雅 段云凤 《电力系统保护与控制》 EI CSCD 北大核心 2024年第15期167-177,共11页
锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的... 锂离子电池剩余使用寿命(remaining useful life,RUL)是使用者十分关心的问题,其涉及电池的更换时间和安全。针对锂离子电池的电容量非线性变化趋势,提出了一种基于自适应噪声完全集合经验模态分解与双向长短期记忆网络-Transformer的锂离子电池剩余使用寿命预测方法。首先,利用自适应噪声完全集合经验模态分解方法对锂离子电池电容量数据进行分解。其次,使用串联的双向长短期记忆神经网络和Transformer网络对分解后得到的残差序列和本征模态分量序列进行建模预测。最后,将预测的若干本征模态分量序列和残差序列进行求和,并对求和之后的最终预测数据与原始数据进行RUL预测。采用NASA公开的电池数据集对所提方法进行验证,结果表明,所提方法的平均绝对误差、均方根误差、平均绝对百分比误差和绝对误差控制分别控制在0.0173、0.0231、1.2084%和3个循环周期以内,能够有效地提高锂离子电池RUL的预测精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 transformer网络 双向长短期记忆网络 完全集合经验模态分解
下载PDF
基于CEEMDAN-Transformer的灌浆流量混合预测模型 被引量:4
2
作者 李凯 任炳昱 +2 位作者 王佳俊 关涛 余佳 《水利学报》 EI CSCD 北大核心 2023年第7期806-817,共12页
灌浆流量是最重要的水利工程灌浆参数之一,通过对灌浆流量的有效预测,可以实现对异常工况的提前响应,以保障施工质量与工程安全。然而由于灌浆过程面临的复杂地质情况,灌浆流量数据存在强非线性与波动性的特点,难以获得令人满意的计算... 灌浆流量是最重要的水利工程灌浆参数之一,通过对灌浆流量的有效预测,可以实现对异常工况的提前响应,以保障施工质量与工程安全。然而由于灌浆过程面临的复杂地质情况,灌浆流量数据存在强非线性与波动性的特点,难以获得令人满意的计算精度。现有灌浆流量预测存在的不足如下:传统神经网络模型对时间序列特征提取和加工处理不足,导致预测精度有限;传统神经网络模型测试集进行一次计算仅能输出一个结果,进行多个时间步预测需要繁杂的多次计算;单测点预测结果预测时间短并且无法反映灌浆流量序列变化的整体趋势,不利于控制灌浆流量和保障施工质量。针对上述问题,本研究提出基于CEEMDAN-Transformer的灌浆流量混合预测模型。基于完全自适应噪声集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)方法将灌浆流量分解为本征模函数与残差信号,解决灌浆流量数据的非线性与强波动的问题;采用多头注意力Transformer实现多个本征模函数(Intrinsic Mode Function,IMF)序列到序列的预测,采用多头注意力机制来构建输入和输出的全局依赖关系,提升时间序列参数特征提取水平;最后,建立时序测点多输入多输出模型实现灌浆流量预测,提升多输出序列计算效率,反映整体趋势的多输出序列能够为灌浆流量控制提供参考。工程应用结果表明,本研究提出的基于CEEMDAN-Transformer的灌浆流量混合预测模型具有较好的计算精度和计算效率。 展开更多
关键词 灌浆流量预测 完全自适应噪声集合经验模态分解 transformer算法 注意力机制 序列到序列
下载PDF
一种灰色关联分析优化ICEEMDAN的VP倾斜仪信号降噪模型
3
作者 庞聪 孙海洋 +3 位作者 刘天龙 姚瑶 李忠亚 马武刚 《大地测量与地球动力学》 CSCD 北大核心 2024年第6期654-660,共7页
VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行I... VP倾斜仪固体潮信号受仪器监测复杂环境限制,多含有大量环境噪声。为获得真实固体潮曲线,提出一种基于灰色关联分析优化改进的自适应噪声完备集合经验模态分解(ICEEMDAN)VP倾斜仪信号降噪模型(GRA-ICEEMDAN)。该方法首先将含噪信号进行ICCEMDAN处理,得到若干个固有模态函数(IMF),并依次排列与标记;然后基于这些IMF分别计算相关系数、互信息、R^(2)、Adj-R^(2)、MSE、SSE、RMSE、MAE、MAPE、样本熵等10个评价指标值,构建IMF可信度评价指标矩阵;最后借助灰色关联分析(GRA)计算各评价指标与不同IMF之间的关联系数和关联度,依据关联度大小对各个IMF进行排序,将排名靠前的IMF进行线性重构,即可完成信号降噪。仿真去噪实验和实测去噪实验均表明,GRA-ICEEMDAN模型优于卡尔曼滤波、70阶低通FIR滤波、Savitzky-Golay等经典降噪模型,能显著区分噪声成分和有效成分,原始信号分解后的重构误差与信号损失极小,可推广至其他仪器的复杂信号降噪中。 展开更多
关键词 VP倾斜仪 信号降噪 改进的自适应噪声完备集合经验模态分解 灰色关联分析 固有模态函数 样本熵 互信息
下载PDF
基于CEEMD-IDWT的受载煤岩微震电压去噪算法
4
作者 李鑫 刘志勇 +4 位作者 杨桢 李昊 周婧 卜婧然 王艺儒 《电子测量与仪器学报》 CSCD 北大核心 2024年第8期124-136,共13页
受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进... 受载复合煤岩变形破裂过程中产生的微小震动信号包含煤岩内部结构破裂信息,传统设备采集的微震信号存在大量环境噪声而无法直接进行分析。为有效提取受载煤岩变形破裂过程微震信号的变化特征,采用互补集合经验模态分解算法(CEEMD)与改进dmey小波(IDWT)算法相融合,提出一种新型CEEMD-IDWT联合去噪算法。该算法首先利用CEEMD算法对原始信号进行分解,然后对分解得到的IMF分量应用IDWT算法进行去噪处理,最终将处理过的分量进行重构得到去噪信号。利用仿真分析和单轴压缩实验对该算法的有效性进行验证,结果表明:CEEMD-IDWT联合算法在仿真分析中,相比传统算法信噪比最大提高204.5%,对于其他改进去噪算法信噪比最少提高11.8%,去噪能力具有明显优势;将该算法嵌入自研微震电压采集设备,在复合煤岩单轴压缩实验中得到的微震电压信号噪噪比仅为0.08975,实际去噪效果明显;经CEEMD-IDWT联合算法去噪之后的微震电压具有明显的变化特征,显著提升了信号去噪效果,有效避免了微震电压信号的失真,可以作为受载煤岩变形破裂微震电压信号去噪处理的理想算法,为煤岩动力灾害的准确预判提供了一种可靠且先进的技术参考。 展开更多
关键词 受载煤岩 微震电压 互补集合经验模态分解 改进dmey小波 去噪算法
下载PDF
基于特征判定系数的电力变压器振动信号故障诊断
5
作者 谢丽蓉 严侣 +1 位作者 吐松江·卡日 张馨月 《电力工程技术》 北大核心 2024年第3期217-225,共9页
变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposit... 变压器带电故障诊断对于保证电力变压器安全平稳运行具有重要的意义。针对变压器工作环境复杂且单一参数表征变压器故障类型不全面的问题,文中提出一种基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和特征熵权法(entropy weight method,EWM)进行故障诊断的方法。通过相关系数与峭度加权(correlation coefficient and weighted kurtosis,CCWK)原则筛选CEEMDAN分量并重构信号,在实现剔除冗余分量的同时,提升变压器振动信号特征的表征能力;利用EWM构建特征判定系数实现单一数据诊断变压器故障类型;通过主成分分析法减小混合域特征尺度,采用鸡群优化算法优化支持向量机(support vector machine,SVM)模型进行故障诊断。对某变电站110 kV三相油浸式变压器进行分析,结果表明与概率神经网络和SVM等变压器故障诊断方法相比,文中方法能在提前定性故障类型的同时,进一步提高变压器故障诊断的准确率与效率。 展开更多
关键词 故障诊断 变压器振动信号 自适应噪声完备集合经验模态分解(CEEMDAN) 信噪比 熵权法(EWM) 支持向量机(SVM) 鸡群优化算法
下载PDF
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法
6
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进的自适应噪声完备集合经验模态分解 分布熵 信噪比
下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:1
7
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
下载PDF
基于CEEMDAN-HT的永磁同步电机匝间短路振动信号故障特征提取研究 被引量:2
8
作者 夏焰坤 李欣洋 +1 位作者 任俊杰 寇坚强 《振动与冲击》 EI CSCD 北大核心 2024年第5期72-81,共10页
由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(co... 由于长时间处于高负荷运行状态,永磁同步电机(permanent magnet synchronous motor, PMSM)定子绕组线圈匝与匝之间的绝缘性能容易降低,导致出现匝间短路,此时电机的振动强度会发生改变。针对此现象,提出将自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与希尔伯特变换(Hilbert transform, HT)结合,构成一种CEEMDAN-HT非线性信号分析方法,并将其应用于提取振动信号故障特征。首先,利用CEEMDAN算法分解振动信号,得到一系列本征模态函数(intrinsic mode function, IMF),并将主元分析中的方差贡献率用于识别包含故障特征信息的IMF。其次,使用HT对方差贡献率较高的IMF进行分析,并以三维联合时频图呈现时间、瞬时频率与幅值,得到了主要故障特征。最后,使用ANSYS有限元软件建立了电机短路故障模型,并搭建了短路故障试验平台,通过对比有限元仿真结果与试验结果,对提出的方法进行了有效性和准确性验证。 展开更多
关键词 永磁同步电机(permanent magnet synchronous motor PMSM) 振动信号 自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise CEEMDAN) 特征提取 希尔伯特变换(Hilbert transform HT)
下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测
9
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 贝叶斯模型平均(BMA) 沙普利加性解释模型(SHAP)
下载PDF
基于改进CEEMD和RF的低压串联故障电弧识别方法 被引量:3
10
作者 江永鑫 陈丽安 +1 位作者 郭梦倩 徐子萌 《电力系统保护与控制》 EI CSCD 北大核心 2024年第1期97-108,共12页
为了解决完整集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)得到的固有模态函数分量数目及其频段不固定,以及故障电弧特征难以准确提取导致故障识别准确率低的不足,引入T检验和方差贡献率形成了一种改进CEEM... 为了解决完整集合经验模态分解(complete ensemble empirical mode decomposition,CEEMD)得到的固有模态函数分量数目及其频段不固定,以及故障电弧特征难以准确提取导致故障识别准确率低的不足,引入T检验和方差贡献率形成了一种改进CEEMD方法,进一步提出一种基于改进CEEMD和随机森林(random forest,RF)的串联故障电弧识别方法。首先,依托串联电弧故障试验平台,采集不同负载的电流信号。然后,采用改进CEEMD对信号进行分析并提取故障特征量,以TreeBagger函数进行特征降维,形成特征向量样本集。最后,结合RF构建故障电弧诊断模型,对样本集进行分类识别。结果表明:改进CEEMD能有效地提取不同负载电流的故障特征,所提故障电弧识别方法的识别准确率达到97.50%。通过进行不同特征提取方法和不同分类模型对诊断结果影响的消融实验,进一步证明了所提方法的可行性。 展开更多
关键词 故障识别 串联故障电弧 改进CEEMD T检验 方差贡献率 随机森林
下载PDF
基于广义天气分类的ICEEMDAN-LSTM网络光伏发电功率短期预测
11
作者 袁俊球 王迪 +4 位作者 谢小锋 张茜颖 曹尚 曹飞 张经炜 《综合智慧能源》 CAS 2024年第9期53-60,共8页
针对光伏发电功率受天气影响大、随机波动性强的问题,提出基于广义天气分类和改进自适应噪声完备集合经验模态分解(ICEEMDAN)长短期记忆(LSTM)网络的短期光伏发电功率预测方法。基于历史辐照度数据,采用K-means++聚类算法对广义天气类... 针对光伏发电功率受天气影响大、随机波动性强的问题,提出基于广义天气分类和改进自适应噪声完备集合经验模态分解(ICEEMDAN)长短期记忆(LSTM)网络的短期光伏发电功率预测方法。基于历史辐照度数据,采用K-means++聚类算法对广义天气类型进行划分,将天气类型分为3类,再通过ICEEMDAN方法将光伏发电数据分解为若干不同频率的本征模态和残差分量,以降低原始发电数据的非平稳性;在不同天气类型下,建立了不同模态序列分量下的LSTM预测模型;使用训练好的LSTM模型对各分解的子序列模态特征分量进行多维预测,并将各层模态预测序列融合成最终的预测结果。试验结果表明,所构建的ICEEMDAN-LSTM混合模型相较于常规短期光伏发电功率预测模型,具有更高的预测精度。 展开更多
关键词 光伏系统 功率预测 广义天气分类 自适应噪声完备集合经验模态分解 长短期记忆网络
下载PDF
基于ICEEMDAN和共振解调的轴承故障检测方法
12
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 带自适应噪声的改进完全集合经验模态分解(ICEEMDAN) 共振解调 快速峭度图 形态学滤波
下载PDF
基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测 被引量:3
13
作者 李芬 孙凌 +3 位作者 王亚维 屈爱芳 梅念 赵晋斌 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第6期806-818,共13页
针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分... 针对光伏输出功率存在间歇性和波动性的问题,提出一种光伏功率短期区间预测模型.首先,该模型采用自适应噪声完备集合经验模态分解将历史光伏出力数据分解为不同的分量并按照其与赤纬角、时角等时序特征量的相关性定义为时序分量和随机分量.其次,分别使用经过引力搜索算法优化的长短期记忆神经网络和支持向量回归模型对时序分量和随机分量进行预测.再次,叠加时序分量和随机分量的预测结果得到点预测结果.然后,对误差进行Johnson变换及正态分布建模后得到光伏功率区间预测结果.最后,利用算例验证该模型的有效性.结果表明:在不同天气情况下,上述模型比现有预测模型精度更高,具有较好的鲁棒性,能够基于预测值提供较为精准的置信区间. 展开更多
关键词 光伏功率预测 区间预测 自适应噪声完备集合经验模态分解 引力搜索算法 长短期记忆 支持向量回归 Johnson变换
下载PDF
基于ICEEMD-FastICA的滚动轴承故障诊断方法 被引量:1
14
作者 马卫平 洪昆玥 +1 位作者 安宁 宋宇宙 《机械强度》 CAS CSCD 北大核心 2024年第2期281-285,共5页
针对滚动轴承早期故障特征信号提取困难的问题,提出了一种改进完备集成经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition,ICEEMD)和独立分量分析(Independent Component Analysis,ICA)联合故障诊断方法。该方法... 针对滚动轴承早期故障特征信号提取困难的问题,提出了一种改进完备集成经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition,ICEEMD)和独立分量分析(Independent Component Analysis,ICA)联合故障诊断方法。该方法利用峭度准则将经ICEEMD得到的固有模态分量(Intrinsic Mode Function,IMF)重构后结合快速独立分量分析(Fast Independent Component Analysis,FastICA)进行降噪解混,明显降低被测信号中的噪声,并且在故障特征频率处能量幅值取得最大值,便于辨识故障特征。通过试验研究分析,表明该方法可以明显降低噪声干扰,突出故障频率成分。和ICEEMD与包络谱结合的方法对比,信噪比提高了29.54%,能更准确地识别故障特征,达到对滚动轴承故障的判别需求,从而为轴承故障特征提取提供了一种新思路。 展开更多
关键词 改进完备集成经验模态分解 盲源分离 独立分量分析 故障诊断 降噪
下载PDF
基于CEEMDAN-WSVD组合串扰消除法车内噪声源识别
15
作者 李艺江 陈克 《噪声与振动控制》 CSCD 北大核心 2024年第4期224-230,共7页
为解决车内噪声源识别中结构路径易受外部因素干扰,以及多源振动串扰影响,导致采集的工况数据存在噪声等问题,提出基于自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)... 为解决车内噪声源识别中结构路径易受外部因素干扰,以及多源振动串扰影响,导致采集的工况数据存在噪声等问题,提出基于自适应噪声的完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)的CEEMDAN-WSVD组合去噪法,该方法利用自适应加噪特征避免模态混叠现象发生,引入样本熵对高频含噪分量进行小波变换(Wavelet Transform,WT),实现一层降噪后进行重构;并采用奇异值分解(Singular Value Decomposition,SVD)对重构信号获取主分向量,同时使用主分量衰减方法剔除较小主分量,实现二层降噪。运用模拟仿真信号验证上述方法对复杂含噪信号有降噪效果。通过对采集的工况数据降噪处理,计算路径传递率并得到贡献量。将各降噪方法应用于工况传递路径模型中对比分析,发现经过本文方法降噪后模型的合成响应与实测响应准确性较高,降噪效果较优。 展开更多
关键词 声学 完备集合经验模态分解 小波变换 奇异值分解 工况传递路径 噪声源识别
下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究
16
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(ICEEMDAN) 多尺度排列熵 信号降噪
下载PDF
基于ICEEMDAN与POA-SVM的感应电机故障诊断
17
作者 刘满强 吴杰 《现代制造工程》 CSCD 北大核心 2024年第5期127-137,共11页
针对感应电机定子电流故障特征提取困难,支持向量机(SVM)惩罚系数c和核函数参数g的选择对诊断结果影响较大等问题,提出一种改进自适应噪声平均总体经验模态分解(ICEEMDAN)与鹈鹕优化算法(POA)优化支持向量机(POA-SVM)相结合的感应电机... 针对感应电机定子电流故障特征提取困难,支持向量机(SVM)惩罚系数c和核函数参数g的选择对诊断结果影响较大等问题,提出一种改进自适应噪声平均总体经验模态分解(ICEEMDAN)与鹈鹕优化算法(POA)优化支持向量机(POA-SVM)相结合的感应电机故障诊断方法。首先,利用ICEEMDAN经陷波器滤除工频的定子电流获得一系列固有模态函数(IMF);然后,选取各状态信号的前7阶IMF分量并计算能量熵作为故障特征向量;最后,将故障特征向量输入POA-SVM模型得到诊断结果。通过仿真软件Ansoft/Maxwell建立电机模型来获得电流数据,诊断准确率达到了100%,实现了感应电机的故障诊断。为进一步验证诊断方法的优越性,搭建电机故障模拟试验台来采集电流信号,结果表明,该方法在空载、半载和满载3种负载情况下诊断准确率均可达到97.5%以上,与其他故障诊断方法相比,所提方法对感应电机电气故障具有更好的识别能力。 展开更多
关键词 改进自适应噪声平均总体经验模态分解 鹈鹕优化算法 支持向量机 感应电机 故障诊断
下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
18
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
下载PDF
考虑站点分类的城市轨道短时客流预测方法
19
作者 王泰州 徐金华 +2 位作者 陈姜会 李岩 任璐 《计算机工程与应用》 CSCD 北大核心 2024年第19期343-353,共11页
精确、可靠的短时客流预测可为城市轨道交通运营提供保障。考虑不同站点的客流时序特征差异,在对站点分类的基础上,建立了一种城市轨道站点客流的深度学习预测方法。以动态时间规整及K-means算法对站点进行分类,分析各类站点的客流时序... 精确、可靠的短时客流预测可为城市轨道交通运营提供保障。考虑不同站点的客流时序特征差异,在对站点分类的基础上,建立了一种城市轨道站点客流的深度学习预测方法。以动态时间规整及K-means算法对站点进行分类,分析各类站点的客流时序特征;采用自适应噪声完全集成经验模式分解算法对各类站点客流数据进行分解,以减少数据噪声的影响;提出一种融合长短期记忆网络和Transformer模型的深度学习预测方法,从而预测不同类型站点客流。应用西安市轨道交通客流数据验证该方法,结果表明:根据工作日及非工作日的客流数据时序特征可将站点分为职住均衡型、商务办公型、休闲娱乐型和密集居住型4类,所提出的方法在不同类型站点的客流预测结果相比于其他3种单一模型和3种组合模型,平均绝对误差降低16.36%~51.02%、均方根误差降低10.35%~50.76%,平均绝对百分比误差降低14.71%~48.62%,基于15 min、30 min、45 min及60 min不同时间间隔统计的站点客流数据的预测结果相比于其他6种模型,3种指标分别降低了12.63%~51.02%、8.08%~49.12%和6.83%~47.26%。 展开更多
关键词 城市轨道交通 短时预测 站点分类 自适应噪声完全集成经验模式分解算法 长短期记忆网络 transformER
下载PDF
基于WPT-CEEMDAN-SVD的齿轮箱故障诊断
20
作者 李建航 卢永杰 +1 位作者 郭锦萍 康志新 《兰州工业学院学报》 2024年第3期75-79,106,共6页
针对在含噪声情况下难以精确地进行齿轮箱故障诊断的问题,将采集到的原始信号进行小波包分解,根据故障齿轮的啮合频率选取合适的小波包对信号进行重构,得到初步降噪信号;利用CEEMDAN对初步降噪信号进行分解,绘制各IMF分量的相关系数与... 针对在含噪声情况下难以精确地进行齿轮箱故障诊断的问题,将采集到的原始信号进行小波包分解,根据故障齿轮的啮合频率选取合适的小波包对信号进行重构,得到初步降噪信号;利用CEEMDAN对初步降噪信号进行分解,绘制各IMF分量的相关系数与峰度变化曲线图并选择相关系数较大的分量进行重构;通过奇异值分解对信号进一步降噪,并对最终信号频谱图对比分析,判断故障部位及类型。结果表明:该方法能根据实际需求有效提取到特定频率段内的特征频率谱线,优于直接对信号使用时频分析进行处理的结果。 展开更多
关键词 故障诊断 自适应噪声完备集合经验模态分解 奇异值分解 小波包分解
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部