In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squar...In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.展开更多
In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved c...In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.展开更多
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-f...In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.展开更多
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presente...Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.展开更多
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the II...In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.展开更多
The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, w...The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.展开更多
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity proble...Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.展开更多
In this paper,we considered the improved element-free Galerkin(IEFG)method for solving 2D anisotropic steadystate heat conduction problems.The improved moving least-squares(IMLS)approximation is used to establish the ...In this paper,we considered the improved element-free Galerkin(IEFG)method for solving 2D anisotropic steadystate heat conduction problems.The improved moving least-squares(IMLS)approximation is used to establish the trial function,and the penalty method is applied to enforce the boundary conditions,thus the final discretized equations of the IEFG method for anisotropic steady-state heat conduction problems can be obtained by combining with the corresponding Galerkin weak form.The influences of node distribution,weight functions,scale parameters and penalty factors on the computational accuracy of the IEFG method are analyzed respectively,and these numerical solutions show that less computational resources are spent when using the IEFG method.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is ...On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.展开更多
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equi...In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.展开更多
In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension s...In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied.展开更多
With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS a...With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study.展开更多
By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin(DSEFG) method is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin(IE...By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin(DSEFG) method is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin(IEFG) method is used for 2D transient heat conduction problems, and the finite difference method is applied in the splitting direction. The discretized system equation is obtained based on the Galerkin weak form of 2D problem; the essential boundary conditions are imposed with the penalty method; and the finite difference method is employed in the time domain. Four exemplary problems are chosen to verify the efficiency of the DSEFG method. The numerical solutions show that the efficiency and precision of the DSEFG method are greater than ones of the IEFG method for 3D problems.展开更多
This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form s...This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.11026223)the Shanghai Leading Academic Discipline Project,China (Grant No.S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No.SHUCX112359)
文摘In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFC method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11171208 and U1433104)
文摘In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin(ICVEFG) method is presented for two-dimensional(2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)the Innovation Fund Project for Graduate Student of Shanghai University,China (Grant No. SHUCX112359)
文摘In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project, China (Grant No. S30106)
文摘In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker 5 function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method.
基金supported by the National Natural Science Foundation of China (11171208)Shanghai Leading Academic Discipline Project (S30106)
文摘The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)
文摘Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.
基金supported by Natural Science Foundation of Shanxi Province(Grant No.20210302124388).
文摘In this paper,we considered the improved element-free Galerkin(IEFG)method for solving 2D anisotropic steadystate heat conduction problems.The improved moving least-squares(IMLS)approximation is used to establish the trial function,and the penalty method is applied to enforce the boundary conditions,thus the final discretized equations of the IEFG method for anisotropic steady-state heat conduction problems can be obtained by combining with the corresponding Galerkin weak form.The influences of node distribution,weight functions,scale parameters and penalty factors on the computational accuracy of the IEFG method are analyzed respectively,and these numerical solutions show that less computational resources are spent when using the IEFG method.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
基金supported by the National Natural Science Foundation of China(Grant No.51078250)the Research Project by Shanxi Scholarship Council of Shanxi Province,China(Grant No.2013-096)the Scientific&Technological Innovation Program for Postgraduates of Taiyuan University of Science and Technology,China(Grant No.20125026)
文摘On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Shanghai Leading Academic Discipline Project,China(Grant No. S30106)the Innovation Fund for Graduate Student of Shanghai University,China (Grant No. SHUCX120125)
文摘In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.52004169 and 11571223).
文摘In this paper,a fast element-free Galerkin(FEFG)method for three-dimensional(3D)elasticity problems is established.The FEFG method is a combination of the improved element-free Galerkin(IEFG)method and the dimension splitting method(DSM).By using the DSM,a 3D problem is converted to a series of 2D ones,and the IEFG method with a weighted orthogonal function as the basis function and the cubic spline function as the weight function is applied to simulate these 2D problems.The essential boundary conditions are treated by the penalty method.The splitting direction uses the finite difference method(FDM),which can combine these 2D problems into a discrete system.Finally,the system equation of the 3D elasticity problem is obtained.Some specific numerical problems are provided to illustrate the effectiveness and advantages of the FEFG method for 3D elasticity by comparing the results of the FEFG method with those of the IEFG method.The convergence and relative error norm of the FEFG method for elasticity are also studied.
基金the National Natural Science Foundation of China (Grant No. 11171208)Shanghai Leading Academic Discipline Project (Grant No. S30106)
文摘With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study.
基金supported by the National Natural Science Foundation of China(Grant Nos.11571223,and 51404160)the Science and Technology Innovation Foundation of Higher Education of Shanxi Province(Grant No.2016163)
文摘By transforming a 3D problem into some related 2D problems, the dimension splitting element-free Galerkin(DSEFG) method is proposed to solve 3D transient heat conduction problems. The improved element-free Galerkin(IEFG) method is used for 2D transient heat conduction problems, and the finite difference method is applied in the splitting direction. The discretized system equation is obtained based on the Galerkin weak form of 2D problem; the essential boundary conditions are imposed with the penalty method; and the finite difference method is employed in the time domain. Four exemplary problems are chosen to verify the efficiency of the DSEFG method. The numerical solutions show that the efficiency and precision of the DSEFG method are greater than ones of the IEFG method for 3D problems.
基金supported by the National Natural Science Foundation of China (Grant No. 11571223)。
文摘This paper presents an interpolating element-free Galerkin(IEFG) method for solving the two-dimensional(2D) elastic large deformation problems. By using the improved interpolating moving least-squares method to form shape function, and using the Galerkin weak form of 2D elastic large deformation problems to obtain the discrete equations, we obtain the formulae of the IEFG method for 2D elastic large deformation problems. As the displacement boundary conditions can be applied directly, the IEFG method can acquire higher computational efficiency and accuracy than the traditional element-free Galerkin(EFG)method, which is based on the moving least-squares approximation and can not apply the displacement boundary conditions directly. To analyze the influences of node distribution, scale parameter of influence domain and the loading step on the numerical solutions of the IEFG method, three numerical examples are proposed. The IEFG method has almost the same high accuracy as the EFG method, and for some 2D elastic large deformation problems the IEFG method even has higher computational accuracy.