The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt...The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation.展开更多
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec...The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program.展开更多
In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network plann...In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network planning(RNP)has become the primary concern.Compared with the traditional methods,meta-heuristic method is widely used in RNP.Aiming at the target requirements of RFID,such as fewer readers,covering more tags,reducing the interference between readers and saving costs,this paper proposes a hybrid gray wolf optimization-cuckoo search(GWO-CS)algorithm.This method uses the input representation based on random gray wolf search and evaluates the tag density and location to determine the combination performance of the reader's propagation area.Compared with particle swarm optimization(PSO)algorithm,cuckoo search(CS)algorithm and gray wolf optimization(GWO)algorithm under the same experimental conditions,the coverage of GWO-CS is 9.306%higher than that of PSO algorithm,6.963%higher than that of CS algorithm,and 3.488%higher than that of GWO algorithm.The results show that the GWO-CS algorithm cannot only improve the global search range,but also improve the local search depth.展开更多
The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik...The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.展开更多
Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a H...Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.展开更多
为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光...为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。展开更多
针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据...针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据集;其次,结合k⁃匿名和差分隐私对简化后的轨迹数据集分别进行泛化和加噪;最后,设计了兼顾距离误差和轨迹相似性的加权距离,并以加权距离为评价指标,基于改进萤火虫群优化(IGSO)算法求解加权距离小的干扰轨迹。在多个数据集上的实验结果表明,与RD(Differential privacy for Raw trajectory data)、SDTP(Trajectory Protection of Simplification and Differential privacy)、LIC(Linear Index Clustering algorithm)、DPKTS(Differential Privacy based on K-means Trajectory shape Similarity)相比,IGSO-SDTP方法得到的加权距离分别降低了21.94%、9.15%、14.25%、10.55%,说明所提方法发布的干扰轨迹可用性和稳定性更好。展开更多
基金supported by the Lanzhou Jiaotong University-Southwest Jiaotong University Joint Innovation Fund(LH2024027).
文摘The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation.
基金This work was supported in part by an International Research Partnership“Electrical Engineering—Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universitéd’Excellence(LUE)in cooperation between Universitéde Lorraine and King Mongkut’s University of Technology North Bangkok and in part by the National Research Council of Thailand(NRCT)under Senior Research Scholar Program under Grant No.N42A640328.
文摘The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program.
基金supported by the National Natural Science Foundation of China (61761004)the Natural Science Foundation of Guangxi Province,China (2019GXNSFAA245045)。
文摘In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network planning(RNP)has become the primary concern.Compared with the traditional methods,meta-heuristic method is widely used in RNP.Aiming at the target requirements of RFID,such as fewer readers,covering more tags,reducing the interference between readers and saving costs,this paper proposes a hybrid gray wolf optimization-cuckoo search(GWO-CS)algorithm.This method uses the input representation based on random gray wolf search and evaluates the tag density and location to determine the combination performance of the reader's propagation area.Compared with particle swarm optimization(PSO)algorithm,cuckoo search(CS)algorithm and gray wolf optimization(GWO)algorithm under the same experimental conditions,the coverage of GWO-CS is 9.306%higher than that of PSO algorithm,6.963%higher than that of CS algorithm,and 3.488%higher than that of GWO algorithm.The results show that the GWO-CS algorithm cannot only improve the global search range,but also improve the local search depth.
文摘The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.
文摘Gene regulatory network inference helps understand the regulatory mechanism among genes, predict the functions of unknown genes, comprehend the pathogenesis of disease and speed up drug development. In this paper, a Hill function-based ordinary differential equation (ODE) model is proposed to infer gene regulatory network (GRN). A hybrid evolutionary algorithm based on binary grey wolf optimization (BGWO) and grey wolf optimization (GWO) is proposed to identify the structure and parameters of the Hill function-based model. In order to restrict the search space and eliminate the redundant regulatory relationships, L1 regularizer was added to the fitness function. SOS repair network was used to test the proposed method. The experimental results show that this method can infer gene regulatory network more accurately than state of the art methods.
文摘为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。
文摘针对历史轨迹加噪发布干扰轨迹时数据集的冗余问题和轨迹形状相似带来的隐私泄露风险,提出轨迹数据先约简后泛化再进行差分隐私加噪的基于改进萤火虫群优化求解的干扰轨迹发布保护机制(IGSO-SDTP)。首先,基于位置显著点约简历史轨迹数据集;其次,结合k⁃匿名和差分隐私对简化后的轨迹数据集分别进行泛化和加噪;最后,设计了兼顾距离误差和轨迹相似性的加权距离,并以加权距离为评价指标,基于改进萤火虫群优化(IGSO)算法求解加权距离小的干扰轨迹。在多个数据集上的实验结果表明,与RD(Differential privacy for Raw trajectory data)、SDTP(Trajectory Protection of Simplification and Differential privacy)、LIC(Linear Index Clustering algorithm)、DPKTS(Differential Privacy based on K-means Trajectory shape Similarity)相比,IGSO-SDTP方法得到的加权距离分别降低了21.94%、9.15%、14.25%、10.55%,说明所提方法发布的干扰轨迹可用性和稳定性更好。