In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
In this paper,the problem of trajectory de-sign of unmanned aerial vehicles(UAVs)for maximizing the number of satisfied users is studied in a UAV based cellular network where the UAV works as a flying base station tha...In this paper,the problem of trajectory de-sign of unmanned aerial vehicles(UAVs)for maximizing the number of satisfied users is studied in a UAV based cellular network where the UAV works as a flying base station that serves users,and the user indicates its satis-faction in terms of completion of its data request within an allowable maximum waiting time.The trajectory design is formulated as an optimization problem whose goal is to maximize the number of satisfied users.To solve this problem,a machine learning framework based on double Q-learning algorithm is proposed.The algorithm enables the UAV tofind the optimal trajectory that maximizes the number of satisfied users.Compared to the traditional learning algorithms,such as Q-learning that selects and evaluates the action using the same Q-table,the proposed algorithm can decouple the selection from the evaluation,therefore avoid overestimation which leads to sub-optimal policies.Simulation results show that the proposed algorithm can achieve up to 19.4% and 14.1% gains in terms of the number of satisfied users compared to random algorithm and Q-learning algorithm.展开更多
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p...Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.展开更多
In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the oper...In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits.展开更多
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.
基金supported in part by the National Natural Science Foundation of China under Grant 61671086 and Grant 61629101。
文摘In this paper,the problem of trajectory de-sign of unmanned aerial vehicles(UAVs)for maximizing the number of satisfied users is studied in a UAV based cellular network where the UAV works as a flying base station that serves users,and the user indicates its satis-faction in terms of completion of its data request within an allowable maximum waiting time.The trajectory design is formulated as an optimization problem whose goal is to maximize the number of satisfied users.To solve this problem,a machine learning framework based on double Q-learning algorithm is proposed.The algorithm enables the UAV tofind the optimal trajectory that maximizes the number of satisfied users.Compared to the traditional learning algorithms,such as Q-learning that selects and evaluates the action using the same Q-table,the proposed algorithm can decouple the selection from the evaluation,therefore avoid overestimation which leads to sub-optimal policies.Simulation results show that the proposed algorithm can achieve up to 19.4% and 14.1% gains in terms of the number of satisfied users compared to random algorithm and Q-learning algorithm.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51575528)the Science Foundation of China University of Petroleum,Beijing(No.2462022QEDX011).
文摘Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process.
文摘In the context of China’s“double carbon”goals and rural revitalization strategy,the energy transition promotes the large-scale integration of distributed renewable energy into rural power grids.Considering the operational characteristics of rural microgrids and their impact on users,this paper establishes a two-layer scheduling model incorporating flexible loads.The upper-layer aims to minimize the comprehensive operating cost of the rural microgrid,while the lower-layer aims to minimize the total electricity cost for rural users.An Improved Adaptive Genetic Algorithm(IAGA)is proposed to solve the model.Results show that the two-layer scheduling model with flexible loads can effectively smooth load fluctuations,enhance microgrid stability,increase clean energy consumption,and balance microgrid operating costs with user benefits.