The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik...The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.展开更多
[Objectives]The paper was to explore a faster and more accurate detection method for citrus psyllid to prevent and control yellow-shoot disease and inhibit its transmission.[Methods]We used an improved YOLOX based edg...[Objectives]The paper was to explore a faster and more accurate detection method for citrus psyllid to prevent and control yellow-shoot disease and inhibit its transmission.[Methods]We used an improved YOLOX based edge detection method for psyllid,added Convolutional Block Attention Module(CBAM)to the backbone network,and further extracted important features in the channel and space dimensions.The Cross Entropy Loss in the object loss was changed to Focal Loss to further reduce the missed detection rate.[Results]The algorithm described in the study fitted in with the detection platform of psyllid.The data set of psyllid was taken in Lianjiang Orange Garden,Zhanjiang City,Guangdong Province,deeply adapted to the actual needs of agricultural and rural development.Based on YOLOX model,the backbone network and loss function were improved to achieve a more excellent detection method of citrus psyllid.The AP value of 85.66%was obtained on the data set of citrus psyllid,which was 2.70%higher than that of the original model,and the detection accuracies were 8.61%,4.32%and 3.62%higher than that of YOLOv3,YOLOv4-Tiny and YOLOv5-s,respectively,which had been greatly improved.[Conclusions]The improved YOLOX model can better identify citrus psyllid,and the accuracy rate has been improved,laying a foundation for the subsequent real-time detection platform.展开更多
The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated fr...The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.展开更多
In this paper,a sensorless control strategy of a permanent magnet synchronous machine(PMSM)based on an improved rotor flux observer(IFO)is proposed.Due to the unknown integral initial value and the high harmonics caus...In this paper,a sensorless control strategy of a permanent magnet synchronous machine(PMSM)based on an improved rotor flux observer(IFO)is proposed.Due to the unknown integral initial value and the high harmonics caused by current sampling and inverter nonlinearities,the flux linkage estimated by traditional rotor flux observer may be inaccurate.In order to address these issues,a self-adaptive band-pass filter(SABPF)is designed to eliminate the DC component and high-frequency harmonics of the estimated equivalent rotor flux linkage.Furthermore,in order to avoid that the design of PI parameter is influenced by the amplitude of equivalent rotor flux linkage,an improved phase-locked loop(IPLL)is employed to obtain the rotor speed and to normalize the estimated equivalent rotor flux linkage.In addition,angle shift caused by an SABPF is compensated to improve the accuracy of the estimated flux linkage angle.Besides,the parameter robustness of this method is analyzed in detail.Finally,simulation and experimental results demonstrate the effectiveness and parameter robustness of the proposed method.展开更多
Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between...Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).展开更多
Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the ...Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.展开更多
According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated ...According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.展开更多
Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),whi...Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.展开更多
The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the...The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the doubly-fed induction generator (DFIG) wind farm to realize smooth control of wind power output. Based on improved wind power prediction algorithm and wind speed-power curve modeling, a new smooth control strategy with the FESS was proposed. The requirement of power system dispatch for wind power prediction and flywheel rotor speed limit were taken into consideration during the process. While smoothing the wind power fluctuation, FESS can track short-term planned output of wind farm. It was demonstrated by quantitative analysis of simulation results that the proposed control strategy can smooth the active power fluctuation of wind farm effectively and thereby improve power quality of the power grid.展开更多
Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance o...Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance of control system, an improved controller with a second order fuzzy controller and network-induced delay compensator being added to the basic fuzzy controller is proposed to realize self-regulation on-line. For this type of controller, neither plant model nor measurement of network delay is required. So it is capable of automatically adjusting quantified factor, pro- portional factor, and integral factor according to the control system error and its derivative. The design makes full use of the advantages of quickness in operation and reduction of steady state error because of its integral function. The con- troller has a good control effect on time-delay and can keep a better performance by self-regulation on-line in the net- work with data dropout and interference. It is good in quickness, adaptability, and robustness, which is favorable for controlling the long time-delay system.展开更多
To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,an...To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.展开更多
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th...The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.展开更多
Ⅰ.New macroeconomic controls not fully realised China introduced a new set of macroeconomic controls in 2004 in an attempt to control excessive growth.Due to the impact of the Asian Financial Crisis, China’s economy...Ⅰ.New macroeconomic controls not fully realised China introduced a new set of macroeconomic controls in 2004 in an attempt to control excessive growth.Due to the impact of the Asian Financial Crisis, China’s economy grew at a low growth rate between 1998 and 2001.However it accelerated from 2002 onwards,and saw a GDP increase of 11%in the fourth quarler of 2003,a historical high since 1997展开更多
Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality o...Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality of hand hygiene and hospitalization.Follow-up monitoring and real-time recording during the period of morning shift and medical operation concentration time,and compare the compliance of hand hygiene before and after implementation,and evaluate the quality of nosocomial infection.Results:The hand hygiene compliance of doctors and nurses in stage P was 82%.The compliance of medical staff in stage D was 93%.The compliance of stage C was 94%and that of stage A was 95%.The quality score of hospital self-examination nosocomial infection was also significantly increased.Conclusions:The PDCA management cycle can effectively improve the compliance of hand hygiene and the nosocomial infection quality,which is wor thy of circulatory application in or thopedic nosocomial infection quality control,especially improving the quality of hand hygiene.展开更多
This paper proposes a comprehensive design scheme for the extremum seeking control(ESC)of the unmanned aerial vehicle(UAV)close formation flight.The proposed design scheme combines a Newton-Raphson method with an exte...This paper proposes a comprehensive design scheme for the extremum seeking control(ESC)of the unmanned aerial vehicle(UAV)close formation flight.The proposed design scheme combines a Newton-Raphson method with an extended Kalman filter(EKF)to dynamically estimate the optimal position of the following UAV relative to the leading UAV.To reflect the wake vortex effects reliably,the drag coefficient induced by the wake vortex is considered as a performance function.Then,the performance function is parameterized by the first-order and second-order terms of its Taylor series expansion.Given the excellent performance of nonlinear estimation,the EKF is used to estimate the gradient and the Hessian matrix of the parameterized performance function.The output feedback of the proposed scheme is determined by iterative calculation of the Newton-Raphson method.Compared with the traditional ESC and the classic ESC,the proposed design scheme avoids the slow continuous time integration of the gradient.This allows a faster convergence of relative position extremum.Furthermore,the proposed method can provide a smoother command during the seeking process as the second-order term of the performance function is taken into account.The convergence analysis of the proposed design scheme is accomplished by showing that the output feedback is a supermartingale sequence.To improve estimation performance of the EKF,a improved pigeon-inspired optimization(IPIO)is proposed to automatically tune the noise covariance matrix.Monte Carlo simulations for a three-UAV close formation show that the proposed design scheme is robust to the initial position of the following UAV.展开更多
This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits ...This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions.展开更多
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
Some new linear matrix inequality (LMI) representations for delay-independent and delay-dependent stability conditions are obtained by introducing additional matrices and eliminating the product coupling of the system...Some new linear matrix inequality (LMI) representations for delay-independent and delay-dependent stability conditions are obtained by introducing additional matrices and eliminating the product coupling of the system matrices and the Lya-punov matrices. The results improve conservativeness of the given conditions for the analysis and the design of tune-delay systems with polytopic-type uncertainty.展开更多
PEM (Proton Exchange Membrane) fuel cell is a promising renewable energy source to a wide range of applications for its clean products and high power density. However, controlling its humidity is a challenging probl...PEM (Proton Exchange Membrane) fuel cell is a promising renewable energy source to a wide range of applications for its clean products and high power density. However, controlling its humidity is a challenging problem due to the interdependence of several phenomena contributing in membrane's water content. This work deals with efficiency improvement of PEM fuel cells via humidity control. An innovative strategy of control based on the model of Ref. [1] is proposed. It consists on regulating gas humidification rates according to the power demand so that to minimize power losses. The proposed control takes into consideration constraints related to humidification in order to avoid dry out or flooding of the membrane. Simulations results show that time-phasing between hydrogen and oxygen humidification rates plays an important role in minimizing power losses. The proposed control shows significant improvement in the fuel cell's efficiency up to 20%.展开更多
Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A ...Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is effectively injected to increase fueling efficiency and generate a peaked density profile. Local fueling with a short-pulsed SMBI can increase the core plasma density and avoid the degradation arising from edge cooling. Second harmonic electron cyclotron current drive (ECCD) experiments were conducted by launching a focused Gaussian beam with a parallel refractive index of -0.05 ≤ Nil 〈 0.6. Results show that the electron cyclotron (EC) driven current is determined not only by Nil but also by local magnetic field (B) structure where the EC power is deposited. Detailed analysis of the observed NI and B dependences is in progress with a ray-tracing simulation using the TRAVIS code. Fast ion velocity distribution was investigated using fast protons generated by ion cyclotron resonant frequency (ICRF) minority heating. For the standard configuration in Heliotron J, charge ex- change neutral particle analysis (CX-NPA) measurements show higher effective temperature of fast minority protons in the on-axis resonance case compared to that in the HFS (high field side) off-axis resonance case. However, the increase in bulk ion temperature in the HFS resonance case is larger than that in the on-axis resonance.展开更多
文摘The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.
基金Supported by Research and Development Program in Key Areas of Guangdong Province(2020B0202090005)Lianjiang Think Tank Enterprise Project"Demonstration of Intelligent Monitoring and Ecological Prevention and Control Technology of Red Orange Yellow-shoot Disease and Psyllid in Lianjiang"。
文摘[Objectives]The paper was to explore a faster and more accurate detection method for citrus psyllid to prevent and control yellow-shoot disease and inhibit its transmission.[Methods]We used an improved YOLOX based edge detection method for psyllid,added Convolutional Block Attention Module(CBAM)to the backbone network,and further extracted important features in the channel and space dimensions.The Cross Entropy Loss in the object loss was changed to Focal Loss to further reduce the missed detection rate.[Results]The algorithm described in the study fitted in with the detection platform of psyllid.The data set of psyllid was taken in Lianjiang Orange Garden,Zhanjiang City,Guangdong Province,deeply adapted to the actual needs of agricultural and rural development.Based on YOLOX model,the backbone network and loss function were improved to achieve a more excellent detection method of citrus psyllid.The AP value of 85.66%was obtained on the data set of citrus psyllid,which was 2.70%higher than that of the original model,and the detection accuracies were 8.61%,4.32%and 3.62%higher than that of YOLOv3,YOLOv4-Tiny and YOLOv5-s,respectively,which had been greatly improved.[Conclusions]The improved YOLOX model can better identify citrus psyllid,and the accuracy rate has been improved,laying a foundation for the subsequent real-time detection platform.
文摘The generation of electricity based on renewable energy sources,parti-cularly Photovoltaic(PV)system has been greatly increased and it is simply insti-gated for both domestic and commercial uses.The power generated from the PV system is erratic and hence there is a need for an efficient converter to perform the extraction of maximum power.An improved interleaved Single-ended Primary Inductor-Converter(SEPIC)converter is employed in proposed work to extricate most of power from renewable source.This proposed converter minimizes ripples,reduces electromagnetic interference due tofilter elements and the contin-uous input current improves the power output of PV panel.A Crow Search Algo-rithm(CSA)based Proportional Integral(PI)controller is utilized for controlling the converter switches effectively by optimizing the parameters of PI controller.The optimized PI controller reduces ripples present in Direct Current(DC)vol-tage,maintains constant voltage at proposed converter output and reduces over-shoots with minimum settling and rise time.This voltage is given to single phase grid via 1�Voltage Source Inverter(VSI).The command pulses of 1�VSI are produced by simple PI controller.The response of the proposed converter is thus improved with less input current.After implementing CSA based PI the efficiency of proposed converter obtained is 96%and the Total Harmonic Distor-tion(THD)is found to be 2:4%.The dynamics and closed loop operation is designed and modeled using MATLAB Simulink tool and its behavior is performed.
基金This work has been partly supported by National Natural Science Foundation of China(NSFC 51877093,51707079,and 51807075),National Key Research and Development Program of China(Project ID:YS2018YFGH000200),and Fund。
文摘In this paper,a sensorless control strategy of a permanent magnet synchronous machine(PMSM)based on an improved rotor flux observer(IFO)is proposed.Due to the unknown integral initial value and the high harmonics caused by current sampling and inverter nonlinearities,the flux linkage estimated by traditional rotor flux observer may be inaccurate.In order to address these issues,a self-adaptive band-pass filter(SABPF)is designed to eliminate the DC component and high-frequency harmonics of the estimated equivalent rotor flux linkage.Furthermore,in order to avoid that the design of PI parameter is influenced by the amplitude of equivalent rotor flux linkage,an improved phase-locked loop(IPLL)is employed to obtain the rotor speed and to normalize the estimated equivalent rotor flux linkage.In addition,angle shift caused by an SABPF is compensated to improve the accuracy of the estimated flux linkage angle.Besides,the parameter robustness of this method is analyzed in detail.Finally,simulation and experimental results demonstrate the effectiveness and parameter robustness of the proposed method.
文摘Energy conservation and congestion control are widely researched topics in Wireless Sensor Networks in recent years. The main objective is to develop a model to find the optimized path on the basis of distance between source and destination and the residual energy of the node. This paper shows an implementation of nature inspired improved Bat Algorithm to control congestion in Wireless Sensor Networks at transport layer. The Algorithm has been applied on the fitness function to obtain an optimum solution. Simulation results have shown improvement in parameters like network lifetime and throughput as compared with CODA (Congestion Detection and Avoidance), PSO (Particle Swarm Optimization) algorithm and ACO (Ant Colony Optimization).
基金supported by North China Electric Power Research Institute’s Self-Funded Science and Technology Project“Research on Distributed Energy Storage Optimal Configuration and Operation Control Technology for Photovoltaic Promotion in the Entire County”(KJZ2022049).
文摘Aiming at the consumption problems caused by the high proportion of renewable energy being connected to the distribution network,it also aims to improve the power supply reliability of the power system and reduce the operating costs of the power system.This paper proposes a two-stage planning method for distributed generation and energy storage systems that considers the hierarchical partitioning of source-storage-load.Firstly,an electrical distance structural index that comprehensively considers active power output and reactive power output is proposed to divide the distributed generation voltage regulation domain and determine the access location and number of distributed power sources.Secondly,a two-stage planning is carried out based on the zoning results.In the phase 1 distribution network-zoning optimization layer,the network loss is minimized so that the node voltage in the area does not exceed the limit,and the distributed generation configuration results are initially determined;in phase 2,the partition-node optimization layer is planned with the goal of economic optimization,and the distance-based improved ant lion algorithm is used to solve the problem to obtain the optimal distributed generation and energy storage systemconfiguration.Finally,the IEEE33 node systemwas used for simulation.The results showed that the voltage quality was significantly improved after optimization,and the overall revenue increased by about 20.6%,verifying the effectiveness of the two-stage planning.
基金supported by the Chongqing Scientific and Technological Innovating Program under grant CSTC2008AC1014
文摘According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system.
基金supported by the Key Project of Natural Science Fund of Education Department of Anhui Province under Grant No.KJ2015A058Major Program of Teaching Research of Educational Commission of Anhui Province of China under Grant No.2015zdjy059
文摘Manual construction of a rule base for a fuzzy system is the hard and time-consuming task that requires expert knowledge.In this paper we proposed a method based on improved bacterial foraging optimization(IBFO),which simulates the foraging behavior of “E.coli” bacterium,to tune the Gaussian membership functions parameters of an improved Takagi-Sugeno-Kang fuzzy system(C-ITSKFS) rule base.To remove the defect of the low rate of convergence and prematurity,three modifications were produced to the standard bacterial foraging optimization(BFO).As for the low accuracy of finding out all optimal solutions with multi-method functions,the IBFO was performed.In order to demonstrate the performance of the proposed IBFO,multiple comparisons were made among the BFO,particle swarm optimization(PSO),and IBFO by MATLAB simulation.The simulation results show that the IBFO has a superior performance.
文摘The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the doubly-fed induction generator (DFIG) wind farm to realize smooth control of wind power output. Based on improved wind power prediction algorithm and wind speed-power curve modeling, a new smooth control strategy with the FESS was proposed. The requirement of power system dispatch for wind power prediction and flywheel rotor speed limit were taken into consideration during the process. While smoothing the wind power fluctuation, FESS can track short-term planned output of wind farm. It was demonstrated by quantitative analysis of simulation results that the proposed control strategy can smooth the active power fluctuation of wind farm effectively and thereby improve power quality of the power grid.
文摘Aiming at the problem of network-induced delay and data dropout in networked control system, an improved fuzzy controller is proposed in this paper. Considering the great influence of a controller on the performance of control system, an improved controller with a second order fuzzy controller and network-induced delay compensator being added to the basic fuzzy controller is proposed to realize self-regulation on-line. For this type of controller, neither plant model nor measurement of network delay is required. So it is capable of automatically adjusting quantified factor, pro- portional factor, and integral factor according to the control system error and its derivative. The design makes full use of the advantages of quickness in operation and reduction of steady state error because of its integral function. The con- troller has a good control effect on time-delay and can keep a better performance by self-regulation on-line in the net- work with data dropout and interference. It is good in quickness, adaptability, and robustness, which is favorable for controlling the long time-delay system.
基金This research was funded by the Hebei Science and Technology Support Program Project(19273703D)the Hebei Higher Education Science and Technology Research Project(ZD2020318).
文摘To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.
基金supported by the National Natural Science Foundation of China(No.61903291)Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.
文摘Ⅰ.New macroeconomic controls not fully realised China introduced a new set of macroeconomic controls in 2004 in an attempt to control excessive growth.Due to the impact of the Asian Financial Crisis, China’s economy grew at a low growth rate between 1998 and 2001.However it accelerated from 2002 onwards,and saw a GDP increase of 11%in the fourth quarler of 2003,a historical high since 1997
基金supported by Henan Province Higher Education Teaching Reform Research and Practice Project(No.2021SJGLX333)。
文摘Objective:To explore the effect of the Plan-Do-Check-Action(PDCA)cycle on hand hygiene and nosocomial infection quality of or thopedic medical staff.Methods:The whole year of 2021 was selected to monitor the quality of hand hygiene and hospitalization.Follow-up monitoring and real-time recording during the period of morning shift and medical operation concentration time,and compare the compliance of hand hygiene before and after implementation,and evaluate the quality of nosocomial infection.Results:The hand hygiene compliance of doctors and nurses in stage P was 82%.The compliance of medical staff in stage D was 93%.The compliance of stage C was 94%and that of stage A was 95%.The quality score of hospital self-examination nosocomial infection was also significantly increased.Conclusions:The PDCA management cycle can effectively improve the compliance of hand hygiene and the nosocomial infection quality,which is wor thy of circulatory application in or thopedic nosocomial infection quality control,especially improving the quality of hand hygiene.
基金supported by the National Natural Science Foundation of China(Grant Nos.91948204,U20B2071,T2121003 and U1913602)Open Fund/Postdoctoral Fund of the Laboratory of Cognition and Decision Intelligence for Complex Systems,Institute of Automation,Chinese Academy of Sciences(Grant No.CASIA-KFKT-08)。
文摘This paper proposes a comprehensive design scheme for the extremum seeking control(ESC)of the unmanned aerial vehicle(UAV)close formation flight.The proposed design scheme combines a Newton-Raphson method with an extended Kalman filter(EKF)to dynamically estimate the optimal position of the following UAV relative to the leading UAV.To reflect the wake vortex effects reliably,the drag coefficient induced by the wake vortex is considered as a performance function.Then,the performance function is parameterized by the first-order and second-order terms of its Taylor series expansion.Given the excellent performance of nonlinear estimation,the EKF is used to estimate the gradient and the Hessian matrix of the parameterized performance function.The output feedback of the proposed scheme is determined by iterative calculation of the Newton-Raphson method.Compared with the traditional ESC and the classic ESC,the proposed design scheme avoids the slow continuous time integration of the gradient.This allows a faster convergence of relative position extremum.Furthermore,the proposed method can provide a smoother command during the seeking process as the second-order term of the performance function is taken into account.The convergence analysis of the proposed design scheme is accomplished by showing that the output feedback is a supermartingale sequence.To improve estimation performance of the EKF,a improved pigeon-inspired optimization(IPIO)is proposed to automatically tune the noise covariance matrix.Monte Carlo simulations for a three-UAV close formation show that the proposed design scheme is robust to the initial position of the following UAV.
文摘This paper presents an innovative way to enhance the performance of photovoltaic(PV)arrays under uneven shadowing conditions.The study focuses on a triple-series–parallel ladder configuration to exploit the benefits of increased power generation while ad-dressing the challenges associated with uneven shadowing.The proposed methodology focuses on the implementation of improved sliding-mode control technique for efficient global maximum power point tracking.Sliding-mode control is known for its robustness in the presence of uncertainties and disturbances,making it suitable for dynamic and complex systems such as PV arrays.This work employs a comprehensive simulation framework to comment on the performance of the suggested improved sliding-mode control strategy in uneven shadowing scenarios.Comparative analysis has been done to show the better effectiveness of the suggested method than the traditional control strategies.The results demonstrate a remarkable enhancement in the tracking accuracy of the global maximum power point,leading to enhanced energy-harvesting capabilities under challenging environmental conditions.Furthermore,the proposed approach exhibits robustness and adaptability in mitigating the effect of shading on the PV array,thereby increasing overall system efficiency.This research contributes valuable insights into the development of advanced control strategies for PV arrays,particularly in the context of triple-series–parallel ladder configurations operating under uneven shadowing conditions.Under short narrow shading conditions,the improved sliding-mode control method tracks the maximum power better compared with perturb&observe at 20.68%,incremental-conductance at 68.78%,fuzzy incremental-conductance at 19.8%,and constant-velocity sliding-mode control at 1.25%.The improved sliding-mode control method has 60%less chattering than constant-velocity sliding-mode control under shading conditions.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
文摘Some new linear matrix inequality (LMI) representations for delay-independent and delay-dependent stability conditions are obtained by introducing additional matrices and eliminating the product coupling of the system matrices and the Lya-punov matrices. The results improve conservativeness of the given conditions for the analysis and the design of tune-delay systems with polytopic-type uncertainty.
文摘PEM (Proton Exchange Membrane) fuel cell is a promising renewable energy source to a wide range of applications for its clean products and high power density. However, controlling its humidity is a challenging problem due to the interdependence of several phenomena contributing in membrane's water content. This work deals with efficiency improvement of PEM fuel cells via humidity control. An innovative strategy of control based on the model of Ref. [1] is proposed. It consists on regulating gas humidification rates according to the power demand so that to minimize power losses. The proposed control takes into consideration constraints related to humidification in order to avoid dry out or flooding of the membrane. Simulations results show that time-phasing between hydrogen and oxygen humidification rates plays an important role in minimizing power losses. The proposed control shows significant improvement in the fuel cell's efficiency up to 20%.
基金supported by the JSPS-CAS Core University Program in the field of "'Plasma and Nuclear Fusion"the Collaboration Program of the Laboratory for Complex Energy Processes. IAE. Kyoto University. the NIFS Collaborative flesearch Program (NIFS10KUHL030. etc.)+1 种基金the NIFS/NINS project of Formation of International Network for Scientific Collaborationsthe Grant-in-Aid for Sci.Research. MEXT
文摘Recent progress in plasma control studies on the improvement of plasma performance in Heliotron J is reviewed. The supersonic molecular beam injection (SMBI) fueling is successfully applied to Heliotron J plasma. A supersonic H2-beam is effectively injected to increase fueling efficiency and generate a peaked density profile. Local fueling with a short-pulsed SMBI can increase the core plasma density and avoid the degradation arising from edge cooling. Second harmonic electron cyclotron current drive (ECCD) experiments were conducted by launching a focused Gaussian beam with a parallel refractive index of -0.05 ≤ Nil 〈 0.6. Results show that the electron cyclotron (EC) driven current is determined not only by Nil but also by local magnetic field (B) structure where the EC power is deposited. Detailed analysis of the observed NI and B dependences is in progress with a ray-tracing simulation using the TRAVIS code. Fast ion velocity distribution was investigated using fast protons generated by ion cyclotron resonant frequency (ICRF) minority heating. For the standard configuration in Heliotron J, charge ex- change neutral particle analysis (CX-NPA) measurements show higher effective temperature of fast minority protons in the on-axis resonance case compared to that in the HFS (high field side) off-axis resonance case. However, the increase in bulk ion temperature in the HFS resonance case is larger than that in the on-axis resonance.