The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to...The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.展开更多
The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very crit...The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.展开更多
基金Auhui Provincial Key Research and Development Project(No.202004a07020050)National Natural Science Foundation of China Youth Program(No.61901006)。
文摘The extraction of water bodies is essential for monitoring water resources,ecosystem services and the hydrological cycle,so analyzing water bodies from remote sensing images is necessary.The water index is designed to highlight water bodies in remote sensing images.We employ a new water index and digital image processing technology to extract water bodies automatically and accurately from Landsat 8 OLI images.Firstly,we preprocess Landsat 8 OLI images with radiometric calibration and atmospheric correction.Subsequently,we apply KT transformation,LBV transformation,AWEI nsh,and HIS transformation to the preprocessed image to calculate a new water index.Then,we perform linear feature enhancement and improve the local adaptive threshold segmentation method to extract small water bodies accurately.Meanwhile,we employ morphological enhancement and improve the local adaptive threshold segmentation method to extract large water bodies.Finally,we combine small and large water bodies to get complete water bodies.Compared with other traditional methods,our method has apparent advantages in water extraction,particularly in the extraction of small water bodies.
基金National Nature Science Foundation of China,Grant/Award Number:U1813201the Key Scientific Research Projects of Henan Province,Grant/Award Number:22A413011+2 种基金the Training Program for Young Teachers in Universities of Henan Province,Grant/Award Number:2020GGJS137Henan Province Science and Technology R&D projects,Grant/Award Number:202102210135,212102310547 and 212102210080High‐end foreign expert program of Ministry of Science and Technology,Grant/Award Number:G2021026006L。
文摘The operating state of bearing affects the performance of rotating machinery;thus,how to accurately extract features from the original vibration signals and recognise the faulty parts as early as possible is very critical.In this study,the one‐dimensional ternary model which has been proved to be an effective statistical method in feature selection is introduced and shapelet transformation is proposed to calculate the parameter of one‐dimensional ternary model that is usually selected by trial and error.Then XGBoost is used to recognise the faults from the obtained features,and artificial bee colony algorithm(ABC)is introduced to optimise the parameters of XGBoost.Moreover,for improving the performance of intelligent algorithm,an improved strategy where the evolution is guided by the probability that the optimal solution appears in certain solution space is proposed.The experimental results based on the failure vibration signal samples show that the average accuracy of fault signal recognition can reach 97%,which is much higher than the ones corresponding to traditional extraction strategies.And with the help of improved ABC algorithm,the performance of XGBoost classifier could be optimised;the accuracy could be improved from 97.02%to 98.60%compared with the traditional classification strategy.