期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm 被引量:2
1
作者 毛力 宋益春 +2 位作者 李引 杨弘 肖炜 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期51-55,共5页
For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FC... For the question that fuzzy c-means(FCM)clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima,this paper introduces a new metric norm in FCM and particle swarm optimization(PSO)clustering algorithm,and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization(AF-APSO).The experiment shows that the AF-APSO can avoid local optima,and get the best fitness and clustering performance significantly. 展开更多
关键词 fuzzy c-means(fcm) particle swarm optimization(PSO) clustering algorithm new metric norm
原文传递
A NEW UNSUPERVISED CLASSIFICATION ALGORITHM FOR POLARIMETRIC SAR IMAGES BASED ON FUZZY SET THEORY 被引量:2
2
作者 Fu Yusheng Xie Yan Pi Yiming Hou Yinming 《Journal of Electronics(China)》 2006年第4期598-601,共4页
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o... In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data. 展开更多
关键词 Radar polarimetry Synthetic Aperture Radar (SAR) fuzzy set theory Unsupervised classification Image quantization Image enhancement fuzzy c-means fcm clustering algorithm Membership function
下载PDF
Advanced Fuzzy C-Means Algorithm Based on Local Density and Distance 被引量:1
3
作者 Shaochun PANG Yijie +1 位作者 SHAO Sen JIANG Keyuan 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第5期636-642,共7页
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ... This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%. 展开更多
关键词 objective function clustering center fuzzy c-means fcm clustering algorithm degree of member-ship
原文传递
基于多因素均衡动态分簇的WSN路由协议算法
4
作者 朱本科 高丙朋 蔡鑫 《科学技术与工程》 北大核心 2024年第16期6799-6808,共10页
为了解决无线传感器网络分簇路由协议随机筛选簇头节点的位置分布不均衡及转发节点的数据传输路径不合理会加剧节点能量消耗、缩短网络生存周期的问题,提出一种基于改进社交网络搜索(improved social network search, ISNS)算法优化模糊... 为了解决无线传感器网络分簇路由协议随机筛选簇头节点的位置分布不均衡及转发节点的数据传输路径不合理会加剧节点能量消耗、缩短网络生存周期的问题,提出一种基于改进社交网络搜索(improved social network search, ISNS)算法优化模糊C均值聚类(fuzzy C-means, FCM)的多因素均衡动态分簇路由协议(multi-factor balanced dynamic clustering routing protocol, MD-LEACH)。首先,引入莱维飞行改进反向精英学习策略,以增强社交网络搜索算法的全局寻优能力;接着,使用ISNS优化模糊C均值聚类算法对网络节点动态均匀分簇,均衡网络负载;此外,在每个簇内,考虑簇内节点的能量因素和位置因素引入模糊推理,设计两种簇头选取模式,动态选举簇首,提高簇首质量。在稳定传输阶段,将单跳改为簇首之间的通信的方式,使用改进的蚁群算法寻找最优数据传输路径,提高能量效率。仿真结果表明,算法能够有效提高能量效率,平衡网络负载,延长网络生存期。 展开更多
关键词 改进社交网络搜索(ISNS)算法 模糊C均值聚类(fcm) 莱维飞行 多因素均衡 动态分簇 模糊推理
下载PDF
信息不完全确定的区域产品模糊区间聚类方法 被引量:2
5
作者 王坚强 高阳 +1 位作者 吴小月 周振虹 《中国管理科学》 CSSCI 2006年第3期80-85,共6页
区域产品分类与选择是区域经济发展中最重要和最基础的工作。在产品选择与分类时,需要确定指标权系数和分类阈值等参数,这在实际应用中是比较困难的。针对这种情况,提出了一种信息不完全确定的区域产品模糊区间聚类方法。该方法构建了... 区域产品分类与选择是区域经济发展中最重要和最基础的工作。在产品选择与分类时,需要确定指标权系数和分类阈值等参数,这在实际应用中是比较困难的。针对这种情况,提出了一种信息不完全确定的区域产品模糊区间聚类方法。该方法构建了指标权系数信息不完全确定的最优模糊区间聚类模型,利用遗传算法和改进的FCM算法联合求解所得优化模型,得到指标权系数、最优聚类中心和最优划分,进而确定各产品所属类别。最后将该方法应用于某区域的产品分类和主导产品的确定中,实例计算说明该方法的可行性和有效性。 展开更多
关键词 区域产品分类与选择 模糊区间聚类 遗传算法 改进的fcm方法
下载PDF
基于改进模糊C-均值聚类算法的图像分割 被引量:3
6
作者 陈梅 王健 《现代电子技术》 2007年第13期180-181,共2页
在对手抑制式模糊C-均值聚类算法中,参数α的选择有可能导致原有的隶属度之间顺序的改变。针对其不足,提出了一种改进的模糊C-均值聚类算法,他是通过引入2个不同的调节参数1α和2α修正不同大小的隶属度,在保持隶属度的次序不变的前提... 在对手抑制式模糊C-均值聚类算法中,参数α的选择有可能导致原有的隶属度之间顺序的改变。针对其不足,提出了一种改进的模糊C-均值聚类算法,他是通过引入2个不同的调节参数1α和2α修正不同大小的隶属度,在保持隶属度的次序不变的前提下可以加速图像分割的收敛速度。实验表明,该算法不但能有效地提高聚类的速度,且能得到较好的分割效果。 展开更多
关键词 模糊聚类 对手抑制式fcm算法 图像分割 改进fcm算法
下载PDF
改进模糊C均值的客机空调系统退化评估算法 被引量:1
7
作者 丁建立 方正汉 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2021年第1期142-149,共8页
针对使用快速存储记录器(Quick access recorder,QAR)数据进行大型客机空调系统健康评估与异常检测时面临的数据不平衡与先验知识不足的问题,本文提出一种基于改进模糊C均值(Fuzzy C‑means,FCM)的大型客机空调系统退化评估算法。该算法... 针对使用快速存储记录器(Quick access recorder,QAR)数据进行大型客机空调系统健康评估与异常检测时面临的数据不平衡与先验知识不足的问题,本文提出一种基于改进模糊C均值(Fuzzy C‑means,FCM)的大型客机空调系统退化评估算法。该算法计算故障状态与正常状态的距离,并基于大型客机空调系统的物理特性优化了FCM算法的距离函数,引入了左右空调组件的状态差作为评估标准。本算法有效地解决了现行方法存在的过拟合问题,并且对于部件的前期退化有更高的敏感性,能够有效的反映性能退化的中间过程。为航空公司安排航班计划与维修计划,降低运行成本提供了有力的技术支持。 展开更多
关键词 快速存储记录器数据 空调系统 退化评估 改进模糊C均值算法 故障状态
下载PDF
An Efficient Deep Learning-based Content-based Image Retrieval Framework 被引量:1
8
作者 M.Sivakumar N.M.Saravana Kumar N.Karthikeyan 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期683-700,共18页
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base... The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image. 展开更多
关键词 Content based image retrieval(CBIR) improved gray level cooccurrence matrix(GLCM) hierarchal and fuzzy c-means(Hfcm)algorithm deep learning based enhanced convolution neural network(DLECNN)
下载PDF
Knowledge-based detection method for SAR targets
9
作者 Fei Gao Achang Ru +1 位作者 Jun Wang Shiyi Mao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第4期573-579,共7页
When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires bloc... When the classical constant false-alarm rate (CFAR) combined with fuzzy C-means (FCM) algorithm is applied to target detection in synthetic aperture radar (SAR) images with complex background, CFAR requires block-by-block estimation of clutter models and FCM clustering converges to local optimum. To address these problems, this paper pro-poses a new detection algorithm: knowledge-based combined with improved genetic algorithm-fuzzy C-means (GA-FCM) algorithm. Firstly, the algorithm takes target region's maximum and average intensity, area, length of long axis and long-to-short axis ratio of the external ellipse as factors which influence the target appearing probabil- ity. The knowledge-based detection algorithm can produce preprocess results without the need of estimation of clutter models as CFAR does. Afterward the GA-FCM algorithm is improved to cluster pre-process results. It has advantages of incorporating global optimizing ability of GA and local optimizing ability of FCM, which will further eliminate false alarms and get better results. The effectiveness of the proposed technique is experimentally validated with real SAR images. 展开更多
关键词 synthetic aperture radar (SAR) target detection knowledge-based improved genetic algorithm-fuzzy c-means(GA-fcm algorithm.
下载PDF
基于IABC-FCM-RVM算法的拱坝变形预测模型 被引量:11
10
作者 胡雨菡 包腾飞 +1 位作者 朱征 龚健 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2020年第12期1055-1064,共10页
针对传统统计模型中温度和水压因子交叉影响、效应量不易分离的问题,提出了一种基于IABC-FCMRVM算法的拱坝变形预测模型。首先采用基于改进的人工蜂群(IABC)的模糊C-均值聚类算法(FCM)对变形数据进行分类,然后分别对分类后的数据建立分... 针对传统统计模型中温度和水压因子交叉影响、效应量不易分离的问题,提出了一种基于IABC-FCMRVM算法的拱坝变形预测模型。首先采用基于改进的人工蜂群(IABC)的模糊C-均值聚类算法(FCM)对变形数据进行分类,然后分别对分类后的数据建立分段的相关向量机模型(RVM),最后以某高拱坝变形数据对该模型进行了检验,并与统计模型和未聚类的RVM模型预测结果对比分析,结果表明,IABC-FCM-RVM模型具有更好的预测精度。 展开更多
关键词 模糊C均值聚类 改进的人工蜂群算法 相关向量机 拱坝变形预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部