This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-ob...Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.展开更多
This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is ...This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.展开更多
This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are ...This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.展开更多
在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网...在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网中BPCs控制的研究难点。因此,该文设计了一种针对BPCs的事件触发改进一致性协调控制策略。以归一化下垂控制为基础,提出了改进的比例功率一致性算法,实现BPCs间高精度比例功率共享。在此之上,基于BPCs比例功率误差建立事件触发改进一致性算法,并预设触发函数的预判阈值,从而降低系统在稳定状态下的通信次数。最后进行仿真对比分析,结果表明该文提出的方法相比基本一致性算法通信量减少98.35%;同时,与现有控制策略相比,该文提出的方法有着更好的控制性能。展开更多
近年来,海上能源发电技术备受瞩目,一种新兴趋势是将波浪能转换器(wave energy converter,WEC)与海上光伏(offshore floating photovoltaic,OFPV)相结合,形成混合光伏-波浪能转换器系统(hybrid PV-wave energy converter,HPV-WEC)。HPV-...近年来,海上能源发电技术备受瞩目,一种新兴趋势是将波浪能转换器(wave energy converter,WEC)与海上光伏(offshore floating photovoltaic,OFPV)相结合,形成混合光伏-波浪能转换器系统(hybrid PV-wave energy converter,HPV-WEC)。HPV-WEC具有提高海上空间利用率,降低成本以及实现功率稳定输出等优势。为了充分利用HPV-WEC系统之间的协同效应,在不增加新设备的情况下提高能源产量,提出了一种基于改进秃鹰优化算法(improved bald eagle search algorithm,IBES)的HPV-WEC阵列布局优化策略。IBES结合了莱维飞行策略和模拟退火(simulated annealing,SA)机制,以平衡局部开发和全局探索之间的关系。为了评估IBES在优化HPV-WEC阵列方面的有效性,进行了5个浮标和8个浮标规模的阵列优化,并将IBES与其他5种算法进行了比较。实验结果表明,IBES表现出实现最大总功率输出并具有显著的收敛特性。展开更多
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金Supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scientists(Grant No.LR18E050003)the National Natural Science Foundation of China(Grant Nos.51975523,51905481)+2 种基金Natural Science Foundation of Zhejiang Province(Grant No.LY22E050012)the Students in Zhejiang Province Science and Technology Innovation Plan(Xinmiao Talents Program)(Grant No.2020R403054)the China Postdoctoral Science Foundation(Grant No.2020M671784)。
文摘Robot manipulators perform a point-point task under kinematic and dynamic constraints.Due to multi-degreeof-freedom coupling characteristics,it is difficult to find a better desired trajectory.In this paper,a multi-objective trajectory planning approach based on an improved elitist non-dominated sorting genetic algorithm(INSGA-II)is proposed.Trajectory function is planned with a new composite polynomial that by combining of quintic polynomials with cubic Bezier curves.Then,an INSGA-II,by introducing three genetic operators:ranking group selection(RGS),direction-based crossover(DBX)and adaptive precision-controllable mutation(APCM),is developed to optimize travelling time and torque fluctuation.Inverted generational distance,hypervolume and optimizer overhead are selected to evaluate the convergence,diversity and computational effort of algorithms.The optimal solution is determined via fuzzy comprehensive evaluation to obtain the optimal trajectory.Taking a serial-parallel hybrid manipulator as instance,the velocity and acceleration profiles obtained using this composite polynomial are compared with those obtained using a quintic B-spline method.The effectiveness and practicability of the proposed method are verified by simulation results.This research proposes a trajectory optimization method which can offer a better solution with efficiency and stability for a point-to-point task of robot manipulators.
基金funded by the Joint Funds of the National Natural Science Foundation of China (61079001)
文摘This paper deals with dynamic airspace sectorization (DAS) problem by an improved genetic algorithm (iGA). A graph model is first constructed that represents the airspace static structure. Then the DAS problem is formulated as a graph-partitioning problem to balance the sector workload under the premise of ensuring safety. In the iGA, multiple populations and hybrid coding are applied to determine the optimal sector number and airspace sectorization. The sector constraints are well satisfied by the improved genetic operators and protect zones. This method is validated by being applied to the airspace of North China in terms of three indexes, which are sector balancing index, coordination workload index and sector average flight time index. The improvement is obvious, as the sector balancing index is reduced by 16.5 %, the coordination workload index is reduced by 11.2 %, and the sector average flight time index is increased by 11.4 % during the peak-hour traffic.
基金This project was supported by the National Natural Science Foundation of China the Open Project Foundation of Comput-er Software New Technique National Key Laboratory of Nanjing University.
文摘This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.
文摘在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网中BPCs控制的研究难点。因此,该文设计了一种针对BPCs的事件触发改进一致性协调控制策略。以归一化下垂控制为基础,提出了改进的比例功率一致性算法,实现BPCs间高精度比例功率共享。在此之上,基于BPCs比例功率误差建立事件触发改进一致性算法,并预设触发函数的预判阈值,从而降低系统在稳定状态下的通信次数。最后进行仿真对比分析,结果表明该文提出的方法相比基本一致性算法通信量减少98.35%;同时,与现有控制策略相比,该文提出的方法有着更好的控制性能。
文摘近年来,海上能源发电技术备受瞩目,一种新兴趋势是将波浪能转换器(wave energy converter,WEC)与海上光伏(offshore floating photovoltaic,OFPV)相结合,形成混合光伏-波浪能转换器系统(hybrid PV-wave energy converter,HPV-WEC)。HPV-WEC具有提高海上空间利用率,降低成本以及实现功率稳定输出等优势。为了充分利用HPV-WEC系统之间的协同效应,在不增加新设备的情况下提高能源产量,提出了一种基于改进秃鹰优化算法(improved bald eagle search algorithm,IBES)的HPV-WEC阵列布局优化策略。IBES结合了莱维飞行策略和模拟退火(simulated annealing,SA)机制,以平衡局部开发和全局探索之间的关系。为了评估IBES在优化HPV-WEC阵列方面的有效性,进行了5个浮标和8个浮标规模的阵列优化,并将IBES与其他5种算法进行了比较。实验结果表明,IBES表现出实现最大总功率输出并具有显著的收敛特性。