This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential...This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential evolution (FSDE). This combination incorporates FSDE into the optimization process of GSA with an attempt to avoid the premature convergence in GSA. This strategy makes full use of the exploration ability of GSA and the exploitation ability of FSDE. IGSA is tested on a suite of benchmark functions. The experimental results demonstrate the good performance of IGSA.展开更多
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor...The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models.展开更多
With the growing use of service-oriented architecture for designing next generation software systems,the service composition problem and its execution complexity have become even more important in responding to differ...With the growing use of service-oriented architecture for designing next generation software systems,the service composition problem and its execution complexity have become even more important in responding to different user requests.The gravitational search algorithm is one of the latest heuristic algorithms.It has a number of distinguishing features,such as rapid convergence,lower memory usage,and the use of particular parameters,for instance,the distance between the solutions.In this paper,we propose a model for the optimization of the Web service composition problem based on qualitative measures and the gravitational search algorithm.To determine the efficacy of this proposed model we solve the problem with the particle swarm optimization algorithm for comparison.Simulation results show that the gravitational search algorithm has a high potential and substantial efficiency in finding the best combination of Web services.展开更多
Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcom...Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.展开更多
基金supported by the National Natural Science Foundation of China (70871081)the Shanghai Leading Academic Discipline Project of China (S1205YLXK)
文摘This paper presents an improved gravitational search algorithm (IGSA) as a hybridization of a relatively recent evolutionary algorithm called gravitational search algorithm (GSA), with the free search differential evolution (FSDE). This combination incorporates FSDE into the optimization process of GSA with an attempt to avoid the premature convergence in GSA. This strategy makes full use of the exploration ability of GSA and the exploitation ability of FSDE. IGSA is tested on a suite of benchmark functions. The experimental results demonstrate the good performance of IGSA.
基金supported by the National Natural Science Foundation of China(No.51605309)the Aeronautical Science Foundation of China(Nos.201933054002,20163354004)。
文摘The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models.
文摘With the growing use of service-oriented architecture for designing next generation software systems,the service composition problem and its execution complexity have become even more important in responding to different user requests.The gravitational search algorithm is one of the latest heuristic algorithms.It has a number of distinguishing features,such as rapid convergence,lower memory usage,and the use of particular parameters,for instance,the distance between the solutions.In this paper,we propose a model for the optimization of the Web service composition problem based on qualitative measures and the gravitational search algorithm.To determine the efficacy of this proposed model we solve the problem with the particle swarm optimization algorithm for comparison.Simulation results show that the gravitational search algorithm has a high potential and substantial efficiency in finding the best combination of Web services.
文摘Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup.